Bashing unavailable - part 2

Algebra Level 4

{ a + b + c = 1 a 2 + b 2 + c 2 = 2 a 3 + b 3 + c 3 = 3 \large{ \begin{cases} a+b+c=1 \\ a^2+b^2+c^2 = 2 \\ a^3 + b^3+c^3 = 3 \\ \end{cases} }

Let a , b a,b and c c satisfy the system of equations above.

Given that a 4 + b 4 + c 4 = a 1 a 2 a^4 + b^4 + c^4 = \dfrac{a_1}{a_2} for coprime positive integers a 1 a_1 and a 2 a_2 . And a 5 + b 5 + c 5 = a 3 a^5 + b^5 + c^5 = a_3 .

Find the value of a 1 + a 2 + a 3 a_1 + a_2 + a_3 .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using Newton's Identity where:

{ a n S 1 + a n 1 = 0 a n S 2 + a n 1 S 1 + 2 a n 2 = 0 a n S 3 + a n 1 S 2 + a n 2 S 1 + 3 a n 3 = 0 a n S 4 + a n 1 S 3 + a n 2 S 2 + a n 3 S 1 + 4 a n 4 = 0 a n S 5 + a n 1 S 4 + a n 2 S 3 + a n 3 S 4 + a n 4 S 5 + 5 a n 5 = 0 \begin{cases}\\ a_nS_1 + an_1 = 0\\ a_nS_2 + an_1 S_1 + 2an_2 = 0\\ a_nS_3+ an_1 S_2 + an_2 S_1 + 3an_3 = 0\\ a_nS_4 + an_1 S_3 + an_2 S_2 + an_3 S_1 + 4an_4 = 0\\ a_nS_5 + an_1 S_4 + an_2 S_3 + an_3 S_4 + an_4 S_5 + 5an_5 = 0 \end{cases}

But since the polynomial is a third-degree polynomial, there are 4 terms and since there are 4 terms, there are 4 numerical coefficients, so for a n k = 0 an_k = 0 for k k greater than or equal to 4 4 .

Where we assume that a n = a_n = leading coefficient of polynomial

= 1 o f a 3 x 3 + a 2 x 2 + a 1 x + a 0 = P ( x ) = 1 \;of\; a_3 x^3 + a_2 x^2 + a_1 x + a_0 = P(x) .

After algebraic manipulation, we get that S ( 5 ) = 6 S(5) = 6 and from earlier, S ( 4 ) = 25 6 S(4) = \frac{25}{6} . Hence, the answer: 6 + 6 + 25 = 37 \large{6+6+25=\boxed{37}}

Please use maths formatting.Thanks.

Aamir Faisal Ansari - 7 years ago

U s i n g N e w t o n a n d n o t a t i o n s , f r o m t h e g i v e n d a t a : P 1 = S 1 = 1............................................................................... P 1 = 1 P 2 = S 1 P 1 2 S 2 = 2 , s o . . . . . . S 2 = 1 / 2....................... P 2 = 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 3 , s o . . . . . . S 3 = 1 / 6.................. P 3 = 3 F o r G r e a t e r t h a n P 3 , P i = S 1 P i 1 S 2 P i 2 + S 3 i 3 . S o f o r t h i s p r o b l e m P i = P i 1 + 1 / 2 P i 2 + 1 / 6 P i 3 . P 4 = 3 + 1 / 2 2 + 1 / 6 1 = 25 / 6 = a 1 / a 2 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 1 = 25 a 2 = 6. P 5 = 25 / 6 + 1 / 2 3 + 1 / 6 3 = 6 = a 3 a 1 + a 2 + a 3 = 37. Using~Newton~ and~notations,~from~ the~ given~ data:-\\ P_1~=~S_1=1...............................................................................P_1=1\\ P_2~=~S_1*P_1 - 2*S_2~~~=~2,~so......S_2~=~-1/2.......................P_2=2\\ P_3~=~S_1*P_2 - S_2*P_1~+3*S_3*=~3,~so......S_3~=~1/6..................P_3=3\\ ~~~~\\ For~Greater~than~P_3,~~P_i~=~S_1*P_{i-1} - S_2*P_{i-2}+S_3*{i-3}.\\ So ~for~this~problem~~~\color{#3D99F6}{P_i~=~P_{i-1} +1/2*P_{i-2}+1/6*P_{i-3}.}\\ \therefore\\ P_4~=~3+1/2*2+1/6*1~=~25/6=a_1/a_2,.................................a_1=25~~a_2=6.\\ P_5~=~25/6+1/2*3+1/6*3=6~=~a_3\\ \therefore~~a_1+a_2+a_3~=~\Large \color{#D61F06}{37}.\\ .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...