Bashing unavailable - part 5

Algebra Level 4

Given that

a + b + c = 1 \color{#20A900}{a+b+c =1}

a 2 + b 2 + c 2 = 2 \color{#3D99F6}{a^2+b^2+c^2=2}

a 3 + b 3 + c 3 = 3 \color{#D61F06}{a^3+b^3+c^3=3}

Then a 4 + b 4 + c 4 = a 1 a 2 a^4+b^4+c^4= \frac{a_1}{a_2} .... where a 1 a_1 and a 2 a_2 are positive coprime integers.

And a 5 + b 5 + c 5 = a 3 a^5+b^5+c^5=a_3 ...... where a 3 a_3 is an integer.

And a 6 + b 6 + c 6 = a 4 a 5 a^6+b^6+c^6= \frac{a_4}{a_5} ....where a 4 a_4 and a 5 a_5 are positive coprime integers.

And a 7 + b 7 + c 7 = a 6 a 7 a^7 +b^7+c^7= \frac{a_6}{a_7} ....where a 6 a_6 and a 7 a_7 are positive coprime integers.

And a 8 + b 8 + c 8 = a 8 a 9 a^8+b^8+c^8 = \frac{a_8}{a_9} ... where a 8 a_8 and a 9 a_9 are positive coprime integers.

Find a 1 + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 + a 8 + a 9 a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8 +a_9 .


The answer is 1728.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Oct 24, 2014

I always wanted to solve this systematically. Perhaps the following helps. I used Newton's sums.

Let P 1 = a + b + c , P 2 a 2 + b 2 + c 2 , P 3 = a 3 + b 3 + c 3 . . . P_1 = a + b + c, \quad P_2 \ a^2+b^2+c^2, \quad P_3=a^3+b^3+c^3...

and S 1 = a + b + c , S 2 = a b + b c + c a S_1 = a+b+c,\quad S_2 = ab+bc+ca \quad and S 3 = a b c \quad S_3 = abc .

Then we have:

P 1 = S 1 P_1 = S_1

P 2 = S 1 P 1 2 S 2 P_2 = S_1P_1-2S_2

P 3 = S 1 P 2 S 2 P 1 + 3 S 3 P_3 = S_1P_2-S_2P_1+3S_3

P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 P_4 = S_1P_3-S_2P_2+S_3P_1

P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 P_5 = S_1P_4-S_2P_3+S_3P_2

P 6 = S 1 P 5 S 2 P 4 + S 3 P 3 P_6 = S_1P_5-S_2P_4+S_3P_3

P 7 = S 1 P 6 S 2 P 5 + S 3 P 4 P_7 = S_1P_6-S_2P_5+S_3P_4

P 8 = S 1 P 7 S 2 P 6 + S 3 P 5 P_8 = S_1P_7-S_2P_6+S_3P_5

Therefore,

P 1 = 1 P_1 = 1

2 = 1 2 S 2 S 2 = 1 2 2 = 1-2S_2 \quad \Rightarrow S_2 = -\frac {1}{2}

3 = 2 + 1 2 + 3 S 3 S 3 = 1 6 3 = 2 + \frac {1}{2}+3S_3 \quad \Rightarrow S_3 = \frac {1}{6}

P 4 = 3 + 1 2 ( 2 ) + 1 6 ( 1 ) = 25 6 P_4 = 3+\frac {1}{2}(2)+\frac {1}{6}(1) = \frac {25}{6}

P 5 = 25 6 + 1 2 ( 3 ) + 1 6 ( 2 ) = 6 P_5 = \frac {25}{6}+\frac {1}{2}(3)+\frac {1}{6}(2) = 6

P 6 = 6 + 1 2 ( 25 6 ) + 1 6 ( 3 ) = 103 12 P_6 = 6+\frac {1}{2}( \frac {25}{6})+\frac {1}{6}(3) = \frac {103}{12}

P 7 = 103 12 + 1 2 ( 6 ) + 1 6 ( 25 6 ) = 221 18 P_7 = \frac {103}{12} +\frac {1}{2}(6)+\frac {1}{6}(\frac {25}{6}) = \frac {221}{18}

P 8 = 221 18 + 1 2 ( 103 12 ) + 1 6 ( 6 ) = 1265 72 P_8 = \frac {221}{18} +\frac {1}{2}(\frac {103}{12}) + \frac {1}{6}(6) = \frac {1265}{72}

Therefore, a 1 + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 + a 8 + a 9 a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9

= 25 + 6 + 6 + 103 + 12 + 221 + 18 + 1265 + 72 = 1728 = 25 + 6 + 6 + 103 + 12 + 221 + 18 + 1265 + 72 = \boxed {1728}

Using Newton's Identity...

But since the polynomial is of third-degree polynomial, there are 4 terms and since there are 4 terms, there are 4 numerical coefficients, so for a(n-k) = 0 for k greater than or equal to 4.

This reduces to a(n)S(7) + a(n-1)S(6) + a(n-2)S(5) + a(n-3)S(4) = 0 where from earlier, we assumed that a(n) = 1, so a(n-1) = -1, a(n-2) = -1/2, and a(n-3) = -1/6.

Where we assume that a(n) = leading coefficient of polynomial = 1 of a(3)x^3 + a(2)x^2 + a(1)x + a(0) = P(x).

After algebraic manipulations, we get that S(8) = 1265/72 and from earlier, S(7) = 221/18, S(6) = 103/12, S(5) = 6, and S(4) = 25/6. Hence, the answer.

Yeah.. the line "This reduces to..." must start from a(n)S(8) + ... = 0.

John Ashley Capellan - 7 years ago

U s i n g N e w t o n a n d n o t a t i o n s , f r o m t h e g i v e n d a t a : P 1 = S 1 = 1............................................................................... P 1 = 1 P 2 = S 1 P 1 2 S 2 = 2 , s o . . . . . . S 2 = 1 / 2....................... P 2 = 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 3 , s o . . . . . . S 3 = 1 / 6.................. P 3 = 3 F o r G r e a t e r t h a n P 3 , P i = S 1 P i 1 S 2 P i 2 + S 3 P i 3 . S o f o r t h i s p r o b l e m P i = P i 1 + 1 / 2 P i 2 + 1 / 6 P i 3 . P 4 = 3 + 1 / 2 2 + 1 / 6 1 = 25 / 6 = a 1 / a 2 , a 1 = 25 a 2 = 6. P 5 = 25 / 6 + 1 / 2 3 + 1 / 6 3 = 6 = a 3 , a 3 = 6. P 6 = 6 + 1 / 2 25 / 6 + 1 / 6 3 = 103 / 12 = a 4 / a 5 , a 4 = 103 a 5 = 12. P 7 = 103 / 12 + 1 / 2 6 + 1 / 6 25 / 6 = 221 / 18 = a 6 / a 7 , a 6 = 221 a 7 = 18. P 8 = 221 / 18 + 1 / 2 103 / 12 + 1 / 6 6 = 1265 / 72 = a 4 8 / a 9 , a 8 = 1265 a 9 = 72. i = 1 9 a i = 1728. Using~Newton~ and~notations,~from~ the~ given~ data:-\\ P_1~=~S_1=1...............................................................................P_1=1\\ P_2~=~S_1*P_1 - 2*S_2~~~=~2,~so......S_2~=~-1/2.......................P_2=2\\ P_3~=~S_1*P_2 - S_2*P_1~+3*S_3*=~3,~so......S_3~=~1/6..................P_3=3\\ ~~~~\\ For~Greater~than~P_3,~~P_i~=~S_1*P_{i-1} - S_2*P_{i-2}+S_3*P_{i-3}.\\ So ~for~this~problem~~~\color{#3D99F6}{P_i~=~P_{i-1} +1/2*P_{i-2}+1/6*P_{i-3}.}\\ \therefore\\ P_4~=~3+1/2*2+1/6*1~=~25/6=a_1/a_2,~~~~~~~~~~~~~~~~~~~~a_1=25~~a_2=6.\\ P_5~=~25/6+1/2*3+1/6*3=~6~=~a_3,~~~~~~~~~~~~~~~~~~~~~~~~~~a_3=6.\\ P_6~=~6+1/2*25/6+1/6*3=~103/12~=~a_4/a_5,~~~~~~~~~~~~~~~~~~~a_4=103~~a_5=12.\\ P_7~=~103/12+1/2*6+1/6*25/6=~221/18~=~a_6/a_7,~~~~~~~~~~~~~~a_6=221~~a_7=18.\\ P_8~=~221/18+1/2*103/12+1/6*6=~1265/72~=~a_4-8/a_9,~~~~~~~~~~~~~~a_8=1265~~a_9=72.\\ \displaystyle \sum_{i=1}^9a_i=\Large \color{#D61F06}{1728}.

Nikola Djuric
Nov 30, 2014

12x12x12 is answer...

how?... ........

U Z - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...