Bashing unavailable - part 6

Algebra Level 4

Given that

a + b + c = 1 \color{#20A900}{a+b+c =1}

a 2 + b 2 + c 2 = 2 \color{#3D99F6}{a^2+b^2+c^2=2}

a 3 + b 3 + c 3 = 3 \color{#D61F06}{a^3+b^3+c^3=3}

Then a 4 + b 4 + c 4 = a 1 a 2 a^4+b^4+c^4= \frac{a_1}{a_2} .... where a 1 a_1 and a 2 a_2 are positive coprime integers.

And a 5 + b 5 + c 5 = a 3 a^5+b^5+c^5=a_3 ...... where a 3 a_3 is an integer.

And a 6 + b 6 + c 6 = a 4 a 5 a^6+b^6+c^6= \frac{a_4}{a_5} ....where a 4 a_4 and a 5 a_5 are positive coprime integers.

And a 7 + b 7 + c 7 = a 6 a 7 a^7 +b^7+c^7= \frac{a_6}{a_7} ....where a 6 a_6 and a 7 a_7 are positive coprime integers.

And a 8 + b 8 + c 8 = a 8 a 9 a^8+b^8+c^8 = \frac{a_8}{a_9} ... where a 8 a_8 and a 9 a_9 are positive coprime integers.

And a 9 + b 9 + c 9 = a 10 a 11 a^9+b^9+c^9 = \frac{a_{10}}{a_{11}} ... where a 10 a_{10} and a 11 a_{11} are positive coprime integers.

Find a 1 + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 + a 8 + a 9 + a 10 + a 11 a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8 +a_9+a_{10}+a_{11} .


The answer is 2669.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

W e h a v e a b + b c + a c = 1 2 a b c = 1 6 L e t A = a n + b n + c n B = a n 1 + b n 1 + c n 1 C = a n 2 + b n 2 + c n 2 T h e n A = ( a n + b n + c n ) ( a + b + c ) a s a + b + c = 1 A = a n + 1 + a b n + a c n + b a n + b n + 1 + b c n + c a n + c b n + c n + 1 L e t D = a n + 1 + b n + 1 + c n + 1 T h e n A = D + a b ( a n 1 + b n 1 ) + b c ( b n 1 + c n 1 ) + a c ( a n 1 + c n 1 ) A = D + a b ( B c n 1 ) + b c ( B a n 1 ) + a c ( B b n 1 ) A = D + B ( a b + b c + a c ) a b c ( a n 2 + b n 2 + c n 2 ) A = D B 2 C 6 D = A + B 2 + C 6 H e n c e W e h a v e r e c u r s i v e f o r m u l a f o r c a l c u l a t i n g f ( n + 1 ) = a n + 1 + b n + 1 + c n + 1 i n t e r m s o f f ( n ) , f ( n 1 ) a n d f ( n 2 ) . We\quad have\\ ab+bc+ac=\frac { 1 }{ 2 } \\ \quad \quad abc=\frac { 1 }{ 6 } \\ Let\quad \\ { A=a }^{ n }+{ b }^{ n }+{ c }^{ n }\\ B={ a }^{ n-1 }+{ b }^{ n-1 }+{ c }^{ n-1\quad }\\ C={ a }^{ n-2 }+{ b }^{ n-2 }+{ c }^{ n-2 }\\ Then\quad \\ A=({ a }^{ n }+{ b }^{ n }+{ c }^{ n })(a+b+c)\\ as\quad a+b+c=1\\ A={ a }^{ n+1 }+a{ b }^{ n }+a{ c }^{ n }\\ \quad +b{ a }^{ n }+{ b }^{ n+1 }+b{ c }^{ n }\\ \quad +c{ a }^{ n }+c{ b }^{ n }+{ c }^{ n+1 }\\ Let\\ D={ a }^{ n+1 }+{ b }^{ n+1 }+{ c }^{ n+1 }\\ Then\\ A=D+ab({ a }^{ n-1 }+{ b }^{ n-1 })+\\ \quad \quad \quad \quad \quad bc({ b }^{ n-1 }+{ c }^{ n-1 })+\\ \quad \quad \quad \quad \quad ac({ a }^{ n-1 }+{ c }^{ n-1 })\\ A=D+ab(B-{ c }^{ n-1 })\\ \quad \quad \quad \quad +bc(B-{ a }^{ n-1 })\\ \qquad \quad +ac(B-{ b }^{ n-1\quad })\\ A=D+B(ab+bc+ac)-abc({ a }^{ n-2 }+{ b }^{ n-2 }+{ c }^{ n-2 })\\ A=D-\frac { B }{ 2 } -\frac { C }{ 6 } \quad \\ D=A+\frac { B }{ 2 } +\frac { C }{ 6 } \\ Hence\quad We\quad have\quad recursive\quad formula\quad for\quad calculating\quad \\ f(n+1)={ a }^{ n+1 }+{ b }^{ n+1 }+{ c }^{ n+1 }\quad in\quad terms\quad of\quad \\ f(n),f(n-1)\quad and\quad f(n-2).\quad

I solve just like you...

Nikola Djuric - 6 years, 6 months ago

Using Newton's Identity...

But since the polynomial is of third-degree polynomial, there are 4 terms and since there are 4 terms, there are 4 numerical coefficients, so for a(n-k) = 0 for k greater than or equal to 4.

This reduces to a(n)S(7) + a(n-1)S(6) + a(n-2)S(5) + a(n-3)S(4) = 0 where from earlier, we assumed that a(n) = 1, so a(n-1) = -1, a(n-2) = -1/2, and a(n-3) = -1/6.

Where we assume that a(n) = leading coefficient of polynomial = 1 of a(3)x^3 + a(2)x^2 + a(1)x + a(0) = P(x).

After algebraic manipulations, we get that S(9) = 905/36 and from earlier, S(8) = 1265/72, S(7) = 221/18, S(6) = 103/12, S(5) = 6, and S(4) = 25/6. Hence, the answer.

Yeah.. the line "This reduces to..." must start from a(n)S(9) + ... = 0.

John Ashley Capellan - 7 years ago

U s i n g N e w t o n a n d n o t a t i o n s , f r o m t h e g i v e n d a t a : P 1 = S 1 = 1............................................................................... P 1 = 1 P 2 = S 1 P 1 2 S 2 = 2 , s o . . . . . . S 2 = 1 / 2....................... P 2 = 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 3 , s o . . . . . . S 3 = 1 / 6.................. P 3 = 3 F o r G r e a t e r t h a n P 3 , P i = S 1 P i 1 S 2 P i 2 + S 3 i 3 . S o f o r t h i s p r o b l e m P i = P i 1 + 1 / 2 P i 2 + 1 / 6 P i 3 . P 4 = 3 + 1 / 2 2 + 1 / 6 1 = 25 / 6 = a 1 / a 2 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 1 = 25 a 2 = 6. P 5 = 25 / 6 + 1 / 2 3 + 1 / 6 3 = 6 = a 3 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 3 = 6. Using~Newton~ and~notations,~from~ the~ given~ data:-\\ P_1~=~S_1=1...............................................................................P_1=1\\ P_2~=~S_1*P_1 - 2*S_2~~~=~2,~so......S_2~=~-1/2.......................P_2=2\\ P_3~=~S_1*P_2 - S_2*P_1~+3*S_3*=~3,~so......S_3~=~1/6..................P_3=3\\ ~~~~\\ For~Greater~than~P_3,~~P_i~=~S_1*P_{i-1} - S_2*P_{i-2}+S_3*{i-3}.\\ So ~for~this~problem~~~\color{#3D99F6}{P_i~=~P_{i-1} +1/2*P_{i-2}+1/6*P_{i-3}.}\\ \therefore\\ P_4~=~3+1/2*2+1/6*1~=~25/6=a_1/a_2,.................................a_1=25~~~a_2=6.\\ P_5~=~25/6+1/2*3+1/6*3=6~=~a_3,........................................a_3=6.\\ P 6 = 6 + 1 / 2 25 / 6 + 1 / 6 3 = 103 / 12 = a 4 / a 5 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 4 = 103 , a 5 = 12. P 7 = 103 / 12 + 1 / 2 6 + 1 / 6 25 / 6 = 221 / 18 = a 6 / a 7 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 6 = 221 , a 7 = 18. P 8 = 221 / 18 + 1 / 2 103 / 12 + 1 / 6 6 = 1265 / 72 = a 8 / a 9 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 8 = 1265 , a 9 = 72. P 9 = 1265 / 72 + 1 / 2 221 / 18 + 1 / 6 103 / 12 = 905 / 36 = a 10 / a 11 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 10 = 905 , a 11 = 36. i = 1 11 a i = 2669. P_6~=6+1/2*25/6+1/6*3=103/12~=~a_4/a_5,.................................a_4=103,~~~a_5=12.\\ P_7~=~103/12+1/2*6+1/6*25/6=~221/18~=~a_6/a_7,.................................a_6=221,~~~a_7=18.\\ P_8~=~221/18+1/2*103/12+1/6*6=~1265/72~=~a_8/a_9,.................................a_8=1265,~~~a_9=72.\\ P_9~=~1265/72+1/2*221/18+1/6*103/12=~905/36~=~a_{10}/a_{11},.................................a_{10}=905,~~~a_{11}=36.\\ \displaystyle \sum_{i=1}^{11}a_i=\Large \color{#D61F06}{2669}.

Gonna Sing
Jul 27, 2014

use this for this problems. f(n)=f(n-1)+1/2 f(n-2)+1/6 f(n-3) f(n)=a^{n}+b^{n}+c^{n}. Try it

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...