Basic Algebra 2

Algebra Level 3

Note:this problem is not original


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

a 2 a 12 + 3 a 3 3 = a 2 2 a 3 + ( 3 ) 2 a 3 3 \color{#3D99F6}{\frac{\sqrt{a^2-a\sqrt{12}+3}}{a\sqrt{3}-3}=\frac{\sqrt{a^2-2a\sqrt{3}+(\sqrt{3})^2}}{a\sqrt{3}-3}} ( a 3 ) 2 a 3 3 = a 3 a 3 3 \color{#3D99F6}{\frac{\sqrt{(a-\sqrt{3})^2}}{a\sqrt{3}-3}=\frac{a-\sqrt{3}}{a\sqrt{3}-3}} ( a 3 ) ( a 3 + 3 ) ( a 3 3 ) ( a 3 + 3 ) \color{#3D99F6}{\frac{(a-\sqrt{3})(a\sqrt{3}+3)}{(a\sqrt{3}-3)(a\sqrt{3}+3)}} a 2 3 + 3 a 3 a 3 3 3 a 2 9 \color{#3D99F6}{\frac{a^2\sqrt{3}+3a-3a-3\sqrt{3}}{3a^2-9}} a 2 3 3 3 3 a 2 9 = 3 ( a 2 3 ) 3 ( a 2 3 ) = 3 3 \color{#3D99F6}{\frac{a^2\sqrt{3}-3\sqrt{3}}{3a^2-9}=\frac{\sqrt{3}(a^2-3)}{3(a^2-3)}=\frac{\sqrt{3}}{3}} I got the answer like this without the negative sign but I proceeded with my solution anyways.So s = 3 \color{#D61F06}{s=3} and s s = 3 3 = 27 s^s=3^3=\boxed{27}

Parveen Soni
Nov 9, 2014

keeping in mind a<1 numerator of given can be written as
[{(3^1/2)-a}^2]^(1/2)=3^1/2-a= -(a-3^1/2) and
denominator can be written as (3^1/2)(a-3^1/2)
now nume./deno.= -1/(3^1/2)=-(3^1/2)/3
Hence answer is 3^3=27



Ashish Adiga
Nov 9, 2014

In the numerator , a={√12±√(√12-4*3)}/2=√3 a^{2}-a√12+3=(a-√3)^{2} \frac{(a^{2}-a√12+3)^{1/2}}{a√3-3}=\frac{((a-√3)^{2})^{1/2}}{√3(a-√3)} =\frac{1}{√3}=\frac{√3}{3} Therefore s=3. s^{s}=3^{3}=27

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...