( 6 b c x 3 a c y − 2 b z a + 3 a c y 2 a b z − 6 b c x + 2 a b z 6 b c x − 3 a c y ) × ( 3 a c y − 2 b z a 6 b c x + 2 a b z − 6 b c x 3 a c y + 6 b c x − 3 a c y 2 a b z )
Given that a x + 2 b y + 3 c z = 0 , find the value of the expression above.
Try my set
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
So simple, 6 b c x 3 a c y − 2 b z a = ( 2 b y + 3 c z ) x a Because a x + 2 b y + 3 c z = 0 , so 2 b y + 3 c z = − a x Lastly ( 2 b y + 3 c z ) x a = ( − x a ) a x = − 1 Do the same thing to another then get 9
If I am not mistaken, you have a wrong sign: 6 b c x 3 a c y − 2 b z a = ( 2 b y − 3 c z ) x a , so it is not that simple.
Let (3acy-2bza)/(6bcx) = m
(2abz-6bcx)/(3acy) = n
(6bcx-3acy)/(2abz) = p
So
(m+n+p)x(1/m+1/n+1/p) =
3+(m/n+n/m)+(m/p+p/m)+(n/p+p/n)
AM-GM
3+2+2+2= 9
CMIIW
Ok by your request I am going to correct you. :)
(1) AM-GM works only for some reals. It is not said that the numbers are reals so you cannot use it.
(2) AM is not always equal to GM, so you cannot get the answer. The question did not ask for a minimum/maximum, it asked for the value.
Problem Loading...
Note Loading...
Set Loading...
First, let's simplify things a little. Let p = 6 b c x , q = 3 a c y , r = 2 a b z . By the given equation, we get p + q + r = 0 . Also let α = p q − r , β = q r − p , γ = r p − q . Now let's prove two Lemmas:
Lemma 1: α + β + γ = − α β γ
Proof: α + β + γ = p q − r + q r − p + r p − q = p q r q r ( q − r ) + p r ( r − p ) + p q ( p − q ) = p q r 1 ( 3 ( r − q ) 3 + q 3 − r 3 + 3 ( p − r ) 3 + r 3 − p 3 + 3 ( q − p ) 3 + p 3 − q 3 ) = 3 p q r ( r − q ) 3 + ( p − r ) 3 + ( q − p ) 3 Now there is a theorem which states that if X + Y + Z = 0 , then X 3 + Y 3 + Z 3 = 3 X Y Z . Therefore, we can simplify further: α + β + γ = p q r ( r − q ) ( p − r ) ( q − p ) = − α β γ . Lemma 2: α β + β γ + γ α = − 9 .
Proof: α β + β γ + γ α = p q ( q − r ) ( r − p ) + q r ( r − p ) ( p − q ) + r p ( p − q ) ( q − r ) = p q − r 2 + r ( p + q ) − p q + q r − p 2 + p ( q + r ) − q r + r p − q 2 + q ( p + r ) − r p = − 3 − p q 2 r 2 − q r 2 p 2 − r p 2 q 2 = − 3 − 2 ( p q r p 3 + q 3 + r 3 ) Now we use the same theorem from Lemma 1, and we get α β + β γ + γ α = − 3 − 2 ∗ 3 = − 9 .
So, let's finally prove what we need to prove. The expression that we need to simplify becomes: ( p q − r + q r − p + r p − q ) ( q − r p + r − p q + p − q r ) = ( α + β + γ ) ( α 1 + β 1 + γ 1 ) = α β γ ( α + β + γ ) ( α β + β γ + γ α ) By Lemmas 1 and 2, this simplifies to 9 .