Basic Algebra test part 4

Algebra Level 5

( 3 a c y 2 b z a 6 b c x + 2 a b z 6 b c x 3 a c y + 6 b c x 3 a c y 2 a b z ) × ( 6 b c x 3 a c y 2 b z a + 3 a c y 2 a b z 6 b c x + 2 a b z 6 b c x 3 a c y ) \left(\frac{3acy-2bza}{6bcx}+\frac{2abz-6bcx}{3acy}+\frac{6bcx-3acy}{2abz}\right) \\ \\ \\ \times \\ \left(\frac{6bcx}{3acy-2bza} +\frac{3acy}{2abz-6bcx} +\frac{2abz}{6bcx-3acy}\right)

Given that x a + y 2 b + z 3 c = 0 \dfrac{x} {a} +\dfrac{y} {2b}+\dfrac{z} {3c}=0 , find the value of the expression above.

Try my set

Also try this problem .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ariel Gershon
Apr 13, 2015

First, let's simplify things a little. Let p = 6 b c x , q = 3 a c y , r = 2 a b z p = 6bcx, q = 3acy, r = 2abz . By the given equation, we get p + q + r = 0 p + q + r = 0 . Also let α = q r p , β = r p q , γ = p q r \displaystyle\alpha = \frac{q-r}{p}, \beta = \frac{r-p}{q}, \gamma = \frac{p-q}{r} . Now let's prove two Lemmas:

Lemma 1: α + β + γ = α β γ \alpha+\beta + \gamma = -\alpha\beta\gamma

Proof: α + β + γ = q r p + r p q + p q r = q r ( q r ) + p r ( r p ) + p q ( p q ) p q r \alpha + \beta + \gamma = \frac{q-r}{p} + \frac{r-p}{q} + \frac{p-q}{r} = \frac{qr(q-r)+pr(r-p)+pq(p-q)}{pqr} = 1 p q r ( ( r q ) 3 + q 3 r 3 3 + ( p r ) 3 + r 3 p 3 3 + ( q p ) 3 + p 3 q 3 3 ) = \frac{1}{pqr}\left(\frac{(r-q)^3 +q^3 - r^3}{3} + \frac{(p-r)^3 +r^3 - p^3}{3} + \frac{(q-p)^3 +p^3 - q^3}{3}\right) = ( r q ) 3 + ( p r ) 3 + ( q p ) 3 3 p q r =\frac{(r-q)^3+(p-r)^3+(q-p)^3}{3pqr} Now there is a theorem which states that if X + Y + Z = 0 X+Y+Z=0 , then X 3 + Y 3 + Z 3 = 3 X Y Z X^3+Y^3+Z^3 = 3XYZ . Therefore, we can simplify further: α + β + γ = ( r q ) ( p r ) ( q p ) p q r = α β γ . \alpha + \beta + \gamma = \frac{(r-q)(p-r)(q-p)}{pqr} = -\alpha\beta\gamma. \boxed{} Lemma 2: α β + β γ + γ α = 9 \alpha\beta+\beta\gamma+\gamma\alpha = -9 .

Proof: α β + β γ + γ α = ( q r ) ( r p ) p q + ( r p ) ( p q ) q r + ( p q ) ( q r ) r p \alpha\beta + \beta\gamma +\gamma\alpha = \frac{(q-r)(r-p)}{pq} + \frac{(r-p)(p-q)}{qr} + \frac{(p-q)(q-r)}{rp} = r 2 + r ( p + q ) p q p q + p 2 + p ( q + r ) q r q r + q 2 + q ( p + r ) r p r p = \frac{-r^2+r(p+q)-pq}{pq} + \frac{-p^2+p(q+r)-qr}{qr} + \frac{-q^2+q(p+r)-rp}{rp} = 3 2 r 2 p q 2 p 2 q r 2 q 2 r p = 3 2 ( p 3 + q 3 + r 3 p q r ) =-3-\frac{2r^2}{pq}-\frac{2p^2}{qr}-\frac{2q^2}{rp} = -3 -2\left(\frac{p^3+q^3+r^3}{pqr}\right) Now we use the same theorem from Lemma 1, and we get α β + β γ + γ α = 3 2 3 = 9. \alpha\beta + \beta\gamma +\gamma\alpha = -3-2*3 = -9. \boxed{}

So, let's finally prove what we need to prove. The expression that we need to simplify becomes: ( q r p + r p q + p q r ) ( p q r + q r p + r p q ) \left(\frac{q-r}{p}+\frac{r-p}{q}+\frac{p-q}{r}\right)\left(\frac{p}{q-r}+\frac{q}{r-p} + \frac{r}{p-q}\right) = ( α + β + γ ) ( 1 α + 1 β + 1 γ ) = ( α + β + γ ) ( α β + β γ + γ α ) α β γ = (\alpha+\beta+\gamma)\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right) = \frac{(\alpha+\beta+\gamma)(\alpha\beta+\beta\gamma+\gamma\alpha)}{\alpha\beta\gamma} By Lemmas 1 and 2, this simplifies to 9 \boxed{9} .

Yoga Nugraha
Apr 11, 2015

So simple, 3 a c y 2 b z a 6 b c x = ( y 2 b + z 3 c ) a x \frac{3acy-2bza}{6bcx}=(\frac{y}{2b}+\frac{z}{3c})\frac{a}{x} Because x a + y 2 b + z 3 c = 0 \frac{x}{a}+\frac{y}{2b}+\frac{z}{3c}=0 , so y 2 b + z 3 c = x a \frac{y}{2b}+\frac{z}{3c}=-\frac{x}{a} Lastly ( y 2 b + z 3 c ) a x = ( a x ) x a = 1 (\frac{y}{2b}+\frac{z}{3c})\frac{a}{x}=(-\frac{a}{x})\frac{x}{a}=-1 Do the same thing to another then get 9

If I am not mistaken, you have a wrong sign: 3 a c y 2 b z a 6 b c x = ( y 2 b z 3 c ) a x , \frac{3acy-2bza}{6bcx}=\left(\frac{y}{2b}-\frac{z}{3c}\right)\frac{a}{x}, so it is not that simple.

José Miguel Manzano - 6 years, 2 months ago
Johan Kurniawan
Apr 12, 2015

Let (3acy-2bza)/(6bcx) = m

(2abz-6bcx)/(3acy) = n

(6bcx-3acy)/(2abz) = p

So

(m+n+p)x(1/m+1/n+1/p) =

3+(m/n+n/m)+(m/p+p/m)+(n/p+p/n)

AM-GM

3+2+2+2= 9

CMIIW

Ok by your request I am going to correct you. :)

(1) AM-GM works only for some reals. It is not said that the numbers are reals so you cannot use it.

(2) AM is not always equal to GM, so you cannot get the answer. The question did not ask for a minimum/maximum, it asked for the value.

Joel Tan - 6 years, 2 months ago

Log in to reply

thanks ....

Johan Kurniawan - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...