Areas

Geometry Level 1

Given an equilateral triangle with side length 5 units, find the area of the triangle in square units.

11 2 11\sqrt2 15 15 10 2 10\sqrt2 35 35 25 3 4 \frac{25\sqrt3}4 20 20 25 25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A = 3 4 x 2 = 3 4 5 2 = 25 3 4 A=\dfrac{\sqrt{3}}{4}x^2 = \dfrac{\sqrt{3}}{4}5^2 = \dfrac{25\sqrt{3}}{4}

How do you know that the area is 3 4 x 2 \displaystyle \frac { \sqrt { 3 } } { 4 } x ^ { 2 } ?

. . - 2 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...