Basic calculation problem

Algebra Level 3

Evaluate:

1 x ( x + 1 ) + 1 ( x + 1 ) ( x + 2 ) + 1 ( x + 2 ) ( x + 3 ) + + 1 ( x + 99 ) ( x + 100 ) + 1 x + 100 \frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)}+\ldots+\frac{1}{(x+99)(x+100)} +\frac{1}{x+100}

1 x \frac{1}{x} 1 None of these choices 1 x 1 100 \frac{1}{x}-\frac{1}{100}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 x ( x + 1 ) + 1 ( x + 1 ) ( x + 2 ) + 1 ( x + 2 ) ( x + 3 ) + + 1 ( x + 99 ) ( x + 100 ) + 1 x + 100 \frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)}+\ldots+\frac{1}{(x+99)(x+100)} +\frac{1}{x+100}

= 1 x 1 x + 1 + 1 x + 1 1 x + 2 + 1 x + 2 1 x + 3 + 1 x + 100 + 1 x + 100 =\frac{1}{x} - \frac{1}{x+1} + \frac{1}{x+1}-\frac{1}{x+2} + \frac{1}{x+2}-\frac{1}{x+3}+\ldots-\frac{1}{x+100}+\frac{1}{x+100}

Pair it on:

= 1 x + ( 1 x + 1 + 1 x + 1 ) + ( 1 x + 2 + 1 x + 2 ) + ( 1 x + 3 + + ( 1 x + 100 + 1 x + 100 ) =\frac{1}{x}+( - \frac{1}{x+1} + \frac{1}{x+1})+(-\frac{1}{x+2} + \frac{1}{x+2})+(-\frac{1}{x+3}+\ldots+(-\frac{1}{x+100}+\frac{1}{x+100})

= 1 x = \boxed{\frac{1}{x}}

Did it the same way.Upvoted!

Athiyaman Nallathambi - 5 years, 9 months ago
Revanth Gumpu
Aug 24, 2015

Just rewrite each fraction as 1/n -1/(n+1) and then cancel out the same pairs and your left with 1/x.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...