Basic calculus-2

Calculus Level 1

y = sin 2 x 1 + cos x \large y=\frac{\sin^2x}{1+\cos x}

Find d y d x \dfrac {dy}{dx} .

cos x \cos x 1 cos x 1-\cos x sin x \sin x sec x \sec x sin x sec x \sin x-\sec x tan x \tan x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohammad Khaza
Oct 4, 2017

shaping that, y = s i n 2 x 1 + c o s x y=\frac{sin^2x}{1+cosx}

or, y = 1 c o s 2 x 1 + c o s x y=\frac{1-cos^2x}{1+cosx} = 1 c o s x 1-cosx

now, d y d x = 0 + s i n x = s i n x \frac{dy}{dx}=0+sinx=sinx

Munem Shahriar
Jan 16, 2018

y = sin 2 x 1 + cos x y = 1 cos x 2 1 + cos x 2 [ sin 2 x = 1 cos 2 x ] y = cos x + 1 \begin{aligned} y & = \dfrac{\sin^2 x}{1+\cos x} \\ y & = \dfrac{1-\cos x^2}{1+\cos x^2} ~~~~~~~~[\sin^2 x = 1- \cos^2 x] \\ y & = -\cos x +1 \\ \end{aligned}

Now,

d d x ( 1 cos x ) \dfrac{d}{dx} (1-\cos x)

= 0 ( sin x ) = 0 - (-\sin x)

= 0 + sin x = 0+ \sin x

= sin x = \sin x

thanks for posting a solution.

Mohammad Khaza - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...