basic calculus

Calculus Level 2

Given that y = ( sin x ) 2 y= (\sin x)^2 , find d y d x \dfrac {dy}{dx} .

sin x \sin x sin 4 x \sin 4x cos x \cos x cos 4 x \cos 4x cos 2 x \cos 2x sin 2 x \sin 2x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Munem Shahriar
Oct 5, 2017

Relevant wiki: Chain Rule

d ( sin x ) 2 d x \dfrac{d(\sin x)^2}{dx}

= d d x ( sin x ) 2 = \dfrac{d}{dx} (\sin x)^2

= d d u ( u 2 ) d d x sin ( x ) = \dfrac{d}{du} (u^2) \dfrac{d}{dx} \sin(x)

= 2 u cos ( x ) = 2u \cos (x)

= 2 sin ( x ) cos ( x ) = 2 \sin (x) \cos(x)

= sin 2 x = \boxed{\sin 2x}

that is nicely explained.

Mohammad Khaza - 3 years, 8 months ago
Mohammad Khaza
Oct 4, 2017

suppose,sinx=Z, and \text{suppose,sinx=Z, and} y = Z 2 y=Z^2

so now, d y d x \frac{dy}{dx} = d y d z . d z d x \frac{dy}{dz} . \frac{dz}{dx} = 2 z . c o s x 2z . cosx = 2 s i n x c o s x 2 sinx cosx = s i n 2 x sin2x

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...