Basic concept but still difficult #4

Find

ϕ ( 10 5001 ) ( m o d 1000 ) \phi \left( { 10 }^{ 5001 } \right) \pmod{1000}

Details

ϕ \phi means Euler's Function


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aneesh Kundu
Jul 25, 2014

ϕ ( 1 0 5001 ) = 10 5001 ( 1 1 2 ) ( 1 1 5 ) ϕ ( 1 0 5001 ) = 10 5000 10 1 2 4 5 ϕ ( 1 0 5001 ) = 10 5000 4 1000 ϕ ( 1 0 5001 ) ϕ ( 1 0 5001 ) 0 m o d 1000 \phi (10^{ 5001 })={ 10 }^{ 5001 }\cdot (1-\frac { 1 }{ 2 } )\cdot (1-\frac { 1 }{ 5 } )\\ \Rightarrow \quad \phi (10^{ 5001 })={ 10 }^{ 5000 }\cdot 10 \cdot \frac { 1 }{ 2 } \cdot \frac { 4 }{ 5 } \\ \Rightarrow \quad \phi (10^{ 5001 })={ 10 }^{ 5000 }\cdot 4\\ \Rightarrow \quad 1000\quad |\quad \phi (10^{ 5001})\\ \Rightarrow \quad \phi (10^{ 5001 })\quad \equiv \quad 0\quad mod\quad 1000

Did not understand why the problem was named such.

Chandrachur Banerjee - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...