Basic Inequality - 2

Algebra Level 5

{ a + 3 b + 4 c = 25 a 2 + b 2 + c 2 = 25 \begin{cases} a+3b+4c=25 \\ a^2+b^2+c^2=25 \\ \end{cases}

Given that a , b a,b and c c are real numbers satisfying the system of equations above, find the maximum possible value of a a .

Give your answer to 3 decimal places.


The answer is 1.923.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Dec 18, 2015

touched the 340 mark!!!. anyways, the solution:


by Cauchy- Schwarz inequity: ( 3 2 + 4 2 ) ( b 2 + c 2 ) ( 3 b + 4 c ) 2 (3^2+4^2)(b^2+c^2)\geq (3b+4c)^2 from the equatins we have { a 2 + b 2 + c 2 = 25 b 2 + c 2 = 25 a 2 a + 3 b + 4 c = 25 3 b + 4 c = 25 a \begin{cases} a^2+b^2+c^2=25\Longrightarrow b^2+c^2=25-a^2\\ a+3b+4c=25\Longrightarrow 3b+4c=25-a\end{cases} . substitute these values to find 25 ( 25 a 2 ) ( 25 a ) 2 25(25-a^2)\geq (25-a)^2 25 a 2 + 625 a 2 50 a + 625 -25a^2+625\geq a^2-50a+625 0 26 a 2 50 a = 26 a ( a 50 26 ) 0\geq 26a^2-50a=26a(a-\dfrac{50}{26}) this is just a quadratic inequity which gives us: 0 a 50 26 1.923 0\leq a\leq \dfrac{50}{26}\approx \boxed{1.923}

P E R F E C T ! PERFECT!

Dev Sharma - 5 years, 5 months ago
Billy Sugiarto
Dec 24, 2015

It is obvious that 3 b + 4 c = 25 a 3b+4c = 25 - a and b 2 + c 2 = 25 a 2 b^{2} + c^{2} = 25 - a^{2} . By using Cauchy-Schwarz Inequality we have

( b 2 + c 2 ) ( 9 + 16 ) ( 3 b + 4 c ) 2 < = > b 2 + c 2 ( 3 b + 4 c ) 2 25 (b^{2} + c^{2})(9 + 16) \geq (3b + 4c)^{2} <=> b^{2} + c^{2} \geq \frac{(3b +4c)^{2}}{25} .

Therefore,

25 a 2 = b 2 + c 2 ( 25 a ) 2 25 < = > 625 25 a 2 ( 25 a ) 2 < = > 26 a 2 50 a 0 < = > a [ 0 , 25 13 ] 25 - a^{2} = b^{2} + c^{2} \geq \frac{(25-a)^{2}}{25} <=> 625 - 25a^{2} \geq (25-a)^{2} <=> 26a^{2} - 50a \leq 0 <=> a \in [0, \frac{25}{13}] .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...