Basic Integral

Calculus Level 4

1 x d t 1 + [ l o g y t ] = 2005 \int_{1}^x \frac{dt}{ 1 +\bigg[log_y t\bigg]} = 2005

y = 10

then x =

[.] = greatest integer function


The answer is 7604.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prasun Biswas
Feb 6, 2015

Let the given definite integral be I I . We'll first observe the behavior of the function f ( t ) = 1 + log 10 t f(t)=1+\left \lfloor \log_{10}t \right \rfloor for t [ 1 , x ] t\in [1,x] where x x is our required value.

We have, f ( t ) = { 1 t [ 1 , 10 ) 2 t [ 10 , 1 0 2 ) 3 t [ 1 0 2 , 1 0 3 ) ( n + 1 ) t [ 1 0 n , 1 0 n + 1 ) , n Z 0 + f(t)=\begin{cases} 1~\forall t\in [1,10)\\ 2~\forall t\in [10,10^2)\\3~\forall t\in [10^2,10^3)\\ \vdots \\ (n+1)~\forall t\in [10^n,10^{n+1})~,n\in \mathbb{Z_0^+}\end{cases}

Also, we can note that x x has to be a positive value > 1 \gt 1 because f ( x ) f(x) is non-decreasing. Now,

I = 1 10 d t f ( t ) + 10 1 0 2 d t f ( t ) + + 1 0 p x d t f ( t ) \large \displaystyle I=\int_1^{10} \dfrac{dt}{f(t)}+\int_{10}^{10^2} \dfrac{dt}{f(t)}+\cdots + \int_{10^p}^x \dfrac{dt}{f(t)}

where p Z 0 + 1 0 p x 1 0 p + 1 \exists p\in \mathbb{Z_0^+}\mid 10^p\leq x \leq 10^{p+1}

The integral can be written using the behavior of f ( x ) f(x) as:

I = 1 10 d t + 10 1 0 2 1 2 d t + + 1 0 p x 1 p + 1 d t I = [ t ] 1 10 + 1 2 [ t ] 10 1 0 2 + + 1 p + 1 [ t ] 1 0 p x \large I=\displaystyle \int_1^{10}\,dt+\int_{10}^{10^2}\dfrac{1}{2}\,dt+\ldots+\int_{10^p}^x \dfrac{1}{p+1}\,dt \\ \large \implies I=[t]_1^{10}+\dfrac{1}{2}[t]_{10}^{10^2}+\ldots+\dfrac{1}{p+1}[t]_{10^p}^x

We can observe that for I = 2005 I=2005 , we must have p = 3 p=3 because p = 2 p=2 would make I = 54 < 2005 I=54\lt 2005 and p = 4 p=4 would make I = 2604 > 2005 I=2604\gt 2005 . So, using p = 3 p=3 , we can evaluate the integral as:

I = ( 10 1 ) + 1 2 ( 100 10 ) + 1 3 ( 1000 100 ) + 1 4 ( x 1000 ) = 2015 9 + 45 + 300 + x 1000 4 = 2005 x = 7604 I=(10-1)+\dfrac{1}{2}(100-10)+\dfrac{1}{3}(1000-100)+\dfrac{1}{4}(x-1000)=2015 \\ \implies 9+45+300+\dfrac{x-1000}{4}=2005 \implies \boxed{x=7604}

On a side note, this problem annoyed me much since I messed it up on the first try by taking I = 2015 I=2015 instead of 2005 2005 (you know the reason why!)

Prasun Biswas - 6 years, 4 months ago

great solution..

manish bhargao - 6 years, 3 months ago

problem should be of level 4 or 5 it's great

Aishwary Omkar - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...