A calculus problem by Aman Joshi

Calculus Level 3

0 1 3 x 4 + 4 x 3 + 3 x 2 ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 d x = 1 k \large \int_{0} ^ {1} \frac{3x^4 +4x^3 +3x^2}{(4x^3 + 3x^2 + 2x + 1)^2}\ dx = \frac{1}{k}

What is k k ?

0 100 10 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Atul Kumar Ashish
Nov 18, 2017

I = 0 1 3 x 4 + 4 x 3 + 3 x 2 ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 d x = 0 1 3 x 2 + 4 x 3 + 3 x 4 ( 4 + 3 x + 2 x 2 + 1 x 3 ) 2 d x = 10 1 u 2 d u where u = 4 + 3 x + 2 x 2 + 1 x 3 = 1 10 k = 10 \begin{aligned} I&=\int_{0}^{1}\frac{3x^4+4x^3+3x^2}{\left(4x^3+3x^2+2x+1\right)^2}\,dx\\&=\int_{0}^{1}\frac{\frac{3}{x^2}+\frac{4}{x^3}+\frac{3}{x^4}}{\left(4+\frac{3}{x}+\frac{2}{x^2}+\frac{1}{x^3}\right)^2}\,dx \\&=-\int_{\infty}^{10}\frac{1}{u^2}\,du & \small\color{#3D99F6}\text{where }u=4+\frac{3}{x}+\frac{2}{x^2}+\frac{1}{x^3} \\&=\frac{1}{10}\\k&=\boxed{10}\end{aligned}

Thanks, didn't thought of this.

Aman Joshi - 3 years, 6 months ago
Chew-Seong Cheong
Nov 15, 2017

Thanks, @Aniket C-mmon for the solution.

Assuming that P ( x ) ( Q ( x ) ) 2 d x = P 1 ( x ) Q ( x ) + C \displaystyle \int \frac {P(x)}{(Q(x))^2} dx = \frac {P_1(x)}{Q(x)} + C , where P 1 ( x ) P_1(x) is a polynomial and C C is the constant of integration.

3 x 4 + 4 x 3 + 3 x 2 ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 d x = A x 2 + B x + D 4 x 3 + 3 x 2 + 2 x + 1 + C 3 x 4 + 4 x 3 + 3 x 2 ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 = d d x ( A x 2 + B x + D 4 x 3 + 3 x 2 + 2 x + 1 ) = ( 2 A x + B ) ( 4 x 3 + 3 x 2 + 2 x + 1 ) ( A x 2 + B x + D ) ( 12 x 2 + 6 x + 2 ) ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 = 4 A x 4 8 B x 3 + ( 2 A 3 B 12 D ) x 2 + ( 2 A 6 D ) x + B 2 D ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 \begin{aligned} \int \frac {3x^4+4x^3+3x^2}{(4x^3+3x^2+2x+1)^2} \ dx & = \frac {Ax^2+Bx+D}{4x^3+3x^2+2x+1} + C \\ \implies \frac {3x^4+4x^3+3x^2}{(4x^3+3x^2+2x+1)^2} & = \frac d{dx} \left(\frac {Ax^2+Bx+D}{4x^3+3x^2+2x+1}\right) \\ & = \frac {(2Ax+B)(4x^3+3x^2+2x+1) - (Ax^2+Bx+D)(12x^2+6x+2)}{(4x^3+3x^2+2x+1)^2} \\ & = \frac {-4Ax^4-8Bx^3+(2A-3B-12D)x^2 +(2A-6D)x+B-2D}{(4x^3+3x^2+2x+1)^2} \end{aligned}

Comparing coefficients, we have A = 3 4 A = - \dfrac 34 , B = 1 2 B= - \dfrac 12 and D = 1 4 D= - \dfrac 14 . Substituting in the equation,

0 1 3 x 4 + 4 x 3 + 3 x 2 ( 4 x 3 + 3 x 2 + 2 x + 1 ) 2 d x = 3 x 2 + 2 x + 1 4 ( 4 x 3 + 3 x 2 + 2 x + 1 ) 0 1 = 3 20 + 1 4 = 1 10 \begin{aligned} \int_0^1 \frac {3x^4+4x^3+3x^2}{(4x^3+3x^2+2x+1)^2} \ dx & = - \frac {3x^2+2x+1}{4(4x^3+3x^2+2x+1)} \ \bigg|_0^1 = - \frac 3{20} + \frac 14 = \frac 1{10} \end{aligned}

k = 10 \implies k = \boxed{10}

Thanks sir for providing detailed solution :)

Aman Joshi - 3 years, 6 months ago
Aniket C-mmon
Nov 12, 2017

U can assume the given integration to be differentiation of a polynomial function divided by (1+2x+3x^2+4x^3) and then compare the co efficent to find the given polynomial

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...