Basic integrals (2)

Calculus Level 4

0 2 ln ( 1 + 2 x ) 1 + x 2 d x = ( tan 1 a ) ( ln b ) \large \int_0^2 \frac {\ln(1+2x)}{1+x^2}dx = \left(\tan^{-1}a\right) \left(\ln \sqrt{b}\right)

The equation above holds true for natural numbers a a and b b . Find value of a b ab .

10 25 6 8 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 13, 2017

I = 9 2 ln ( 1 + 2 x ) 1 + x 2 d x Let x = tan θ d x = sec 2 θ d θ = 0 tan 1 2 ln ( 1 + 2 tan θ ) sec 2 θ 1 + tan 2 θ d θ = 0 tan 1 2 ln ( 1 + 2 tan θ ) d θ = 0 tan 1 2 ln ( 1 + 2 sin θ cos θ ) d θ = 0 tan 1 2 ln ( cos θ + 2 sin θ cos θ ) d θ = 0 tan 1 2 ln ( 5 cos ( θ tan 1 2 ) cos θ ) d θ = 0 tan 1 2 ln 5 d θ + 0 tan 1 2 ln ( cos ( θ tan 1 2 ) ) d θ 0 tan 1 2 ln ( cos θ ) d θ By identity a b f ( x ) d x = a b f ( a + b x ) d x = ln 5 θ 0 tan 1 2 + 0 tan 1 2 ln ( cos ( θ ) ) d θ 0 tan 1 2 ln ( cos θ ) d θ = ln 5 tan 1 2 + 0 tan 1 2 ln ( cos θ ) d θ 0 tan 1 2 ln ( cos θ ) d θ = tan 1 2 ln 5 \begin{aligned} I & = \int_9^2 \frac {\ln(1+2x)}{1+x^2}dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int_0^{\tan^{-1}2} \frac {\ln(1+2\tan \theta)\sec^2 \theta}{1+\tan^2\theta} d\theta \\ & = \int_0^{\tan^{-1}2} \ln(1+2\tan \theta) \ d\theta \\ & = \int_0^{\tan^{-1}2} \ln \left(1 + \frac {2\sin \theta}{\cos \theta}\right) \ d\theta \\ & = \int_0^{\tan^{-1}2} \ln \left(\frac {\cos \theta + 2\sin \theta}{\cos \theta}\right) \ d\theta \\ & = \int_0^{\tan^{-1}2} \ln \left(\frac {\sqrt 5\cos \left(\theta - \tan^{-1}2\right)}{\cos \theta}\right) \ d\theta \\ & = \int_0^{\tan^{-1}2} \ln \sqrt 5 \ d\theta + {\color{#3D99F6} \int_0^{\tan^{-1}2} \ln \left(\cos \left(\theta - \tan^{-1}2\right)\right)\ d\theta} - \int_0^{\tan^{-1}2} \ln(\cos \theta) \ d\theta & \small \color{#3D99F6} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \ln \sqrt 5 \theta \ \bigg|_0^{\tan^{-1}2} + {\color{#3D99F6} \int_0^{\tan^{-1}2} \ln (\cos (- \theta))\ d\theta} - \int_0^{\tan^{-1}2} \ln(\cos \theta) \ d\theta \\ & = \ln \sqrt 5 \tan^{-1}2 + \int_0^{\tan^{-1}2} \ln (\cos \theta)\ d\theta - \int_0^{\tan^{-1}2} \ln(\cos \theta) \ d\theta \\ & = \tan^{-1}2 \ln \sqrt 5 \end{aligned}

a b = 2 × 5 = 10 \implies ab = 2 \times 5 = \boxed{10}

Exactly , Bonus: use of a b f ( x ) d x = a b f ( a + b x ) \int_{a}^{b} f(x) dx = \int_{a}^{b}f(a+b-x) in the third step would avoid further calculation.

Aman Joshi - 3 years, 6 months ago
D S
Jan 24, 2018

Brief sketch use differentiate under integral with I(a)=ln(ax+1)/x^2+1 Partial fraction calculation gives result

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...