Basic inverse trigonometric function

Geometry Level 1

sin 1 x + cos 1 x = ? \sin^{-1}x+\cos^{-1}x= \, ?

0 0 π 4 \frac{π}{4} π 2 \frac{π}{2} π π

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aareyan Manzoor
Dec 16, 2015

arcsin ( x ) = y sin ( y ) = x \arcsin(x)=y\Longrightarrow \sin(y)=x by using the fact sin ( y ) = cos ( π 2 y ) \sin(y)=\cos(\frac{\pi}{2}-y) , cos ( π 2 y ) = x arccos ( x ) = π 2 y \cos\left(\frac{\pi}{2}-y\right)=x\Longrightarrow \arccos(x)=\frac{\pi}{2}-y y = π 2 arccos ( x ) y=\frac{\pi}{2}-\arccos(x) arcsin ( x ) = π 2 arccos ( x ) \arcsin(x)=\frac{\pi}{2}-\arccos(x) arcsin ( x ) + arccos ( x ) = π 2 \arcsin(x)+\arccos(x)=\boxed{\frac{\pi}{2}}

Kalu Rawat
Aug 23, 2019

Maderchod nots pad

Ossama Ismail
Dec 16, 2020

Just substitute by any value for x, you will get π 2 \dfrac{\pi}{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...