Basic limit ,arctan

Calculus Level 2

lim n ( n arctan ( 3 n ) n arctan ( n ) ) = ? \large \lim_{n \to \infty} \bigg( n\arctan (3n) -n \arctan (n) \bigg) = \ ?


The answer is 0.666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 18, 2018

Relevant wiki: Maclaurin Series

L = lim n ( n tan 1 3 n n tan 1 n ) = lim n n tan 1 ( 3 n n 1 + 3 n 2 ) = lim n n tan 1 ( 2 n 1 + 3 n 2 ) By Maclaurin series = lim n n ( 2 n 1 + 3 n 2 1 3 ( 2 n 1 + 3 n 2 ) 3 + 1 5 ( 2 n 1 + 3 n 2 ) 5 ) = lim n ( 2 n 2 1 + 3 n 2 2 3 n 4 3 ( 1 + 3 n 2 ) 3 + 2 5 n 6 5 ( 1 + 3 n 2 ) 5 ) = lim n ( 2 n 2 + 3 2 3 n 2 3 ( n 2 + 3 ) 3 + 2 5 n 4 5 ( n 2 + 3 ) 5 ) = 2 3 0.667 \begin{aligned} L & = \lim_{n \to \infty} \left( n \tan^{-1} 3n - n \tan^{-1} n \right) \\ & = \lim_{n \to \infty} n \tan^{-1} \left(\frac {3n-n}{1+3n^2} \right) \\ & = \lim_{n \to \infty} n \color{#3D99F6} \tan^{-1} \left(\frac {2n}{1+3n^2} \right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{n \to \infty} n \color{#3D99F6} \left(\frac {2n}{1+3n^2} - \frac 13 \left(\frac {2n}{1+3n^2}\right)^3 + \frac 15 \left(\frac {2n}{1+3n^2}\right)^5 - \cdots \right) \\ & = \lim_{n \to \infty} \left(\frac {2n^2}{1+3n^2} - \frac {2^3n^4}{3(1+3n^2)^3} + \frac {2^5n^6}{5(1+3n^2)^5} - \cdots \right) \\ & = \lim_{n \to \infty} \left(\frac {2}{n^{-2}+3} - \frac {2^3n^{-2}}{3(n^{-2}+3)^3} + \frac {2^5n^{-4}}{5(n^{-2}+3)^5} - \cdots \right) \\ & = \frac 23 \approx \boxed{0.667} \end{aligned}

lim n { n arctan ( 3 n ) n arctan ( n ) } = lim n arctan ( 3 n ) arctan ( n ) 1 n = " 0 0 " \lim\limits_{n \to \infty}\left\{n\arctan{(3n)}-n\arctan{(n)}\right\}=\lim\limits_{n \to \infty}\frac{\arctan{(3n)}-\arctan{(n)}}{\frac{1}{n}}="\frac{0}{0}"

You can continue solving using L H o ^ p i t a l s L'Hôpital's rule .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...