Basic limit

Calculus Level 3

lim x 1 4 x 3 + 3 x + 2 3 x 2 + x + 5 x 2 + x 2 = a b \large \lim _{ x \to 1}{ \frac { \sqrt { 4{ x }^{ 3 }+3x+2 } -\sqrt { 3{ x }^{ 2 }+x+5 } }{ { x }^{ 2 }+x-2 } } = \frac { a }{ b }

If the equation above holds true for coprime positive integers a a and b b , what is a + b a + b ?


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 16, 2017

L = lim x 1 4 x 3 + 3 x + 2 3 x 2 + x + 5 x 2 + x 2 = lim x 1 ( 4 x 3 + 3 x + 2 3 x 2 + x + 5 ) ( 4 x 3 + 3 x + 2 + 3 x 2 + x + 5 ) ( x 2 + x 2 ) ( 4 x 3 + 3 x + 2 + 3 x 2 + x + 5 ) = lim x 1 4 x 3 + 3 x + 2 3 x 2 x 5 ( x 2 + x 2 ) ( 4 x 3 + 3 x + 2 + 3 x 2 + x + 5 ) = lim x 1 4 x 3 3 x 2 + 2 x 3 ( x 2 + x 2 ) ( 4 x 3 + 3 x + 2 + 3 x 2 + x + 5 ) = lim x 1 ( x 1 ) ( 4 x 2 + x + 3 ) ( x 1 ) ( x + 2 ) ( 4 x 3 + 3 x + 2 + 3 x 2 + x + 5 ) = 8 3 ( 3 + 3 ) = 4 9 \begin{aligned} L & = \lim_{x \to 1} \frac {\sqrt{4x^3+3x+2}-\sqrt{3x^2+x+5}}{x^2+x-2} \\ & = \lim_{x \to 1} \frac {\left(\sqrt{4x^3+3x+2}-\sqrt{3x^2+x+5}\right)\color{#3D99F6}\left(\sqrt{4x^3+3x+2}+\sqrt{3x^2+x+5}\right)}{\left(x^2+x-2 \right) \color{#3D99F6} \left(\sqrt{4x^3+3x+2} +\sqrt{3x^2+x+5}\right)} \\ & = \lim_{x \to 1} \frac {4x^3+3x+2-3x^2-x-5}{\left(x^2+x-2 \right)\left(\sqrt{4x^3+3x+2} +\sqrt{3x^2+x+5}\right)} \\ & = \lim_{x \to 1} \frac {4x^3-3x^2+2x-3}{\left(x^2+x-2 \right)\left(\sqrt{4x^3+3x+2} +\sqrt{3x^2+x+5}\right)} \\ & = \lim_{x \to 1} \frac {\cancel{(x-1)}(4x^2+x+3)}{\cancel{(x-1)}(x+2) \left(\sqrt{4x^3+3x+2} +\sqrt{3x^2+x+5}\right)} \\ & = \frac 8{3(3+3)} = \frac 49 \end{aligned}

a + b = 4 + 9 = 13 \implies a+b = 4+9 = \boxed{13}

Rudraksh Sisodia
Mar 27, 2016

just use L hospital rule for the first time and then substitute 1 ,,, the anwser seems to be there !!!

Well I guess that's the simplest of all methods for this particular method.

Rahul Singh - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...