Basic loggin'

Algebra Level 2

2 x + 2 x + 1 + 2 x + 2 + 2 x + 3 = 3 x + 3 x + 1 + 3 x + 2 + 3 x + 3 \large { 2 }^{ x }+{ 2 }^{ x+1 }+{ 2 }^{ x+2 }+{ 2 }^{ x+3 }={ 3 }^{ x }+{ 3 }^{ x+1 }+{ 3 }^{ x+2 }+{ 3 }^{ x+3 }

Given the equation above, x x can be written in the form x = log b a . x=\log _{ b }{ a }. If b = 2 3 , b=\frac{2}{3}, find the value of a b \sqrt { \frac { a }{ b } } .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ponhvoan Srey
Oct 6, 2015

This is quite a straightforward problem; just solve it conventionally:

2 x + 2 x + 1 + 2 x + 2 + 2 x + 3 = 3 x + 3 x + 1 + 3 x + 2 + 3 x + 3 2 x + 2 × 2 x + 4 × 2 x + 8 × 2 x = 3 x + 3 × 3 x + 9 × 3 x + 27 × 3 x 15 × 2 x = 40 × 3 x ( 2 3 ) x = 8 3 x = log 2 3 8 3 { 2 }^{ x }+{ 2 }^{ x+1 }+{ 2 }^{ x+2 }+{ 2 }^{ x+3 }={ 3 }^{ x }{ +3 }^{ x+1 }+{ 3 }^{ x+2 }+{ 3 }^{ x+3 }\\ 2^{ x }+2{ \times 2 }^{ x }+4{ \times 2 }^{ x }+8{ \times 2 }^{ x }={ 3 }^{ x }+{ 3\times 3 }^{ x }+9{ \times 3 }^{ x }+27{ \times 3 }^{ x }\\ 15\times { 2 }^{ x }=40\times { 3 }^{ x }\\ { \left( \frac { 2 }{ 3 } \right) }^{ x }=\frac { 8 }{ 3 } \\ \Longrightarrow x=\log _{ \frac { 2 }{ 3 } }{ \frac { 8 }{ 3 } }

Now we've obtained our a and b: a = 8 3 a=\frac { 8 }{ 3 } , b = 2 3 b=\frac { 2 }{ 3 } .

a b = 4 = 2 \rightarrow \sqrt { \frac { a }{ b } } =\sqrt { 4 } =2

Therefore, a b = 2 \boxed { \sqrt { \frac { a }{ b } } =2 } .

it can also be written as log ( 2 3 ) n ( 8 3 ) n ) \log_{(\frac{2}{3})^n} (\frac{8}{3})^n) for n 0 n\neq 0

Aareyan Manzoor - 5 years, 8 months ago
Akshat Sharda
Oct 6, 2015

2 x + 2 x + 1 + 2 x + 2 + 2 x + 3 = 3 x + 3 x + 1 + 3 x + 2 + 3 x + 3 2 x ( 1 + 2 + 4 + 8 ) = 3 x ( 1 + 3 + 9 + 27 ) ( 2 3 ) x = 8 3 x = log 2 3 8 3 = log b a a b = 8 3 2 3 = 4 = 2 {2 }^{ x }+ { 2 }^{ x+1 }+{ 2 }^{ x+2 }+{ 2 }^{ x+3 }={ 3 }^{ x }{ +3 }^{ x+1 }+{ 3 }^{ x+2 }+{ 3 }^{ x+3 } \\ \Rightarrow 2^{x}(1+2+4+8)=3^{x}(1+3+9+27) \\ \Rightarrow \left(\frac{2}{3}\right)^{x}=\frac{8}{3} \Rightarrow x=\log_{\frac{2}{3}}\frac{8}{3}=\log_{b}{a} \\ \Rightarrow \sqrt{\frac{a}{b}}=\sqrt{\frac{\frac{8}{3}}{\frac{2}{3}}}=\sqrt{4}=\boxed{2}

William Isoroku
Oct 7, 2015

Use multiplication, division and change of base properties of logarithm

that isnt a solution

Utkarsh Grover - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...