An algebra problem by A. R Apon

Algebra Level 2

Which is larger 9 9 50 + 10 0 50 99^{50}+100^{50} or 10 1 50 101^{50} ?

9 9 50 + 10 0 50 = 10 1 50 99^{50}+100^{50}= 101^{50} 10 1 50 > 9 9 50 + 10 0 50 101^{50} > 99^{50}+100^{50} 9 9 50 + 10 0 50 > 10 1 50 99^{50}+100^{50}> 101^{50}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

10 1 50 = ( 100 + 1 ) 50 = 10 0 50 + 50 × 10 0 49 + 50 × 49 2 × 10 0 48 + + 1 9 9 50 = ( 100 1 ) 50 = 10 0 50 50 × 10 0 49 + 50 × 49 2 × 10 0 48 + 1 10 1 50 9 9 50 = 10 0 50 + 50 × 49 × 48 3 × 10 0 47 + 50 × 49 × 48 × 47 × 46 60 × 10 0 45 + + 10 0 2 10 1 50 9 9 50 > 10 0 50 10 1 50 > 9 9 50 + 10 0 50 \begin{aligned} 101^{50} & = (100+1)^{50} = 100^{50} + 50\times 100^{49} + \frac {50\times 49}2 \times 100^{48} + \cdots + 1 \\ 99^{50} & = (100-1)^{50} = 100^{50} - 50\times 100^{49} + \frac {50\times 49}2 \times 100^{48} - \cdots + 1 \\ 101^{50} - 99^{50} & = 100^{50} + \frac {50\times 49\times 48}3 \times 100^{47} + \frac {50\times 49\times 48\times 47 \times 46 }{60} \times 100^{45} + \cdots + 100^2 \\ \implies 101^{50} - 99^{50} & > 100^{50} \\ 101^{50} & > 99^{50} + 100^{50} \end{aligned}

A. R Apon
Oct 3, 2019

101^50 is greater than (99^50 + 100^50)

As 101^50= 1.645 10^100 and (99^50+100^50)= 1.605 10^100

Thank You

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...