Basic Problems About Congruence 1

Define f ( x ) = 6 x + 8 x f(x)= { 6 }^{ x }+{ 8 }^{ x } . Find the remainder when f ( 77 ) f(77) is divided by 49 49 .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Krishna Arjun
Apr 18, 2014

6 x + 8 x = ( 7 + 1 ) x + ( 7 1 ) x f ( 77 ) = ( 7 + 1 ) 77 + ( 7 1 ) 77 t h i s o n e x p a n s i o n l e a v e s a ( m u l t i p l e o f 49 ) + ( 77 7 ) + ( 77 7 ) t h i s c a n b e w r i t t e n a s ( m u l t i p l e o f 49 ) + ( 49 22 ) t h u s f ( 77 ) i s d i v i s i v l e b y 49 h e n c e r e m a i n d e r i s 0. { 6 }^{ x }+{ 8 }^{ x }\quad =\quad (7+1)^{ x }+(7-1)^{ x }\\ \therefore \quad f(77)=(7+1)^{ 77 }+(7-1)^{ 77 }\\ this\quad on\quad expansion\quad leaves\quad a\quad (multiple\quad of\quad 49)+(77*7)+(77*7)\\ this\quad can\quad be\quad written\quad as\quad (multiple\quad of\quad 49)+(49*22)\\ thus\quad f(77)\quad is\quad divisivle\quad by\quad 49\\ hence\quad remainder\quad is\quad 0.

Firstly note that 6 x + 8 x = 2 x ( 3 x + 4 x ) 6^x + 8^x = 2^x (3^x + 4^x) . With this, we need to evaluate the remainders of 2 77 , 3 77 , 4 77 2^{77}, 3^{77}, 4^{77} when divided by 49 49 .

We have 2 10 5 m o d 49 2^{10} \equiv -5 \mod 49 2 70 30 m o d 49 2^{70} \equiv 30 \mod 49 2 77 18 m o d 49 \color{#D61F06}{2^{77} \equiv 18} \mod 49 2 154 = 4 77 30 m o d 49 2^{154} = \color{#3D99F6}{4^{77} \equiv 30} \mod 49 3 10 4 m o d 49 3^{10} \equiv 4 \mod 49 3 70 18 m o d 49 3^{70} \equiv 18 \mod 49 3 77 19 m o d 49 \color{#20A900}{3^{77} \equiv 19 \mod 49}

Thus 6 77 + 8 77 18 ( 30 + 19 ) m o d 49 6 77 + 8 77 0 m o d 49 6^{77}+ 8^{77} \equiv \color{#D61F06}{18} (\color{#20A900}{30} + \color{#3D99F6}{19}) \mod 49 \Leftrightarrow \boxed{6^{77}+ 8^{77} \equiv 0} \mod 49 .

Any number of the form a^n + b^n/c, where a,b,c are in A.P, then they are divisible by a+b or c.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...