Basic Quadratics

Algebra Level 2

Real numbers x x and y y have an arithmetic mean of 7 7 and a geometric mean of 19 \sqrt{19} . Find x 2 + y 2 x^{2}+y^{2} .


The answer is 158.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kritarth Lohomi
Aug 23, 2015

According to the question

x + y 2 = 7 ( 1 ) \dfrac{x+y}{2}=7\implies{(1)} and \text{and} x y = 19 ( 2 ) \sqrt{xy}=\sqrt{19}\implies{(2)}

Squaring (2) we have x y = 19 \color{#D61F06}{xy=19}

From (1) we have

x 2 + y 2 + 2 x y = 196 x 2 + y 2 = 196 38 = 158 x^2+y^2+2\color{#D61F06}{xy} = 196\implies x^2+y^2=196-38=\boxed{158}

Nice, Upvoted!

Swapnil Das - 5 years, 9 months ago
Arjen Vreugdenhil
Sep 18, 2015

Given: x + y 2 = 7 x + y = 14 ; \frac{x+y}{2}=7\Longrightarrow x+y=14; x y = 19 x y = 19. \sqrt{xy}=\sqrt{19}\Longrightarrow xy=19. Now x 2 + y 2 = ( x + y ) 2 2 x y = 1 4 2 2 19 = 196 38 = 158. x^2+y^2=(x+y)^2-2xy=14^2-2\cdot 19=196-38=158.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...