Just for fun!

Algebra Level 3

If x : y : z = 2 : 3 : 4 x:y:z=2:3:4 , find the ratio x 3 + y 3 + z 3 3 x y z ( x + y + z ) 3 \dfrac{x^3+y^3+z^3-3xyz}{(x+y+z)^3} .

If the ratio is in the form p q \frac { p }{ q } , where gcd ( p , q ) = 1 \gcd(p,q)=1 , find p + q p+q


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since x : y : z = 2 : 3 : 4 x:y:z=2:3:4 , we get x = 2 t , y = 3 t , z = 4 t x=2t, y=3t, z=4t .

So, x 3 + y 3 + z 3 3 x y z ( x + y + z ) 3 = 8 t 3 + 27 t 3 + 64 t 3 72 t 3 729 t 3 = 1 27 \dfrac{x^3+y^3+z^3-3xyz}{(x+y+z)^3}=\dfrac{8t^3+27t^3+64t^3-72t^3}{729t^3}=\dfrac{1}{27} .

Thus, p + q = 1 + 27 = 28 p+q=1+27=\boxed{28} .

Please check your solution it should be 8 t 3 \boxed{8t^3} in your second last step.

Atanu Ghosh - 5 years, 2 months ago

Log in to reply

Correct it brother!

Atanu Ghosh - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...