Basic trigo - I

Geometry Level 3

If sin x a = cos x b = tan x c = k \frac { \sin { x } }{ a } =\frac { \cos { x } }{ b } =\frac { \tan { x } }{ c } =k

then find the value of b c + 1 c k + a k 1 + b k bc+\frac { 1 }{ ck } +\frac { ak }{ 1+bk }

This question is a part of the set: Basic Trigo

a k 2 \frac { a }{ { k }^{ 2 } } 1 k ( a + 1 a ) \frac { 1 }{ k } \left( a+\frac { 1 }{ a } \right) k ( a + 1 a ) k\left( a+\frac { 1 }{ a } \right) a 2 k \frac { { a }^{ 2 } }{ { k } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Krishna Ramesh
May 14, 2014

by cross multiplication, we get

sin x = a k \sin { x } =ak

cos x = b k \cos { x=bk }

tan x = c k \tan { x } =ck

now, cos x t a n x = b c k 2 b c = sin x k 2 b c = a k \cos { x\cdot tanx=bc{ k }^{ 2 } } \Rightarrow \quad bc=\frac { \sin { x } }{ { k }^{ 2 } } \Rightarrow \quad bc=\frac { a }{ k }

1 c k + a k 1 + b k = 1 tan x + sin x 1 + cos x = cos x sin x + sin x 1 + cos x = cos x + cos 2 x + sin 2 x sin x ( 1 + cos x ) = 1 sin x \frac { 1 }{ ck } +\frac { ak }{ 1+bk } =\frac { 1 }{ \tan { x } } +\frac { \sin { x } }{ 1+\cos { x } } =\frac { \cos { x } }{ \sin { x } } +\frac { \sin { x } }{ 1+\cos { x } } =\frac { \cos { x } +\cos ^{ 2 }{ x } +\sin ^{ 2 }{ x } }{ \sin { x } \left( 1+\cos { x } \right) } =\frac { 1 }{ \sin { x } }

1 c k + a k 1 + b k = 1 a k \Rightarrow \frac { 1 }{ ck } +\frac { ak }{ 1+bk } =\frac { 1 }{ ak }

so, b c + 1 c k + a k 1 + b k = a k + 1 a k = 1 k ( a + 1 a ) bc+\frac { 1 }{ ck } +\frac { ak }{ 1+bk } =\frac { a }{ k } +\frac { 1 }{ ak } =\frac { 1 }{ k } \left( a+\frac { 1 }{ a } \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...