Basic trigo - VI

Geometry Level 2

Let f ( θ ) = cot θ 1 + cot θ f\left( \theta \right) =\frac { \cot { \theta } }{ 1+\cot { \theta } } and α + β = 5 π 4 \alpha +\beta =\frac { 5\pi }{ 4 } . Then the value of f ( α ) . f ( β ) f\left( \alpha \right) .f\left( \beta \right) can be written as a b \frac { a }{ b } where a a and b b are coprime integers. Find a + b a+b

This question is a part of the set: Basic Trigo


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Krishna Ramesh
Jun 14, 2014

f ( α ) . f ( β ) = ( cot α 1 + cot α ) ( cot β 1 + cot β ) = cot α cot β 1 + cot α + cot β + cot α cot β f\left( \alpha \right) .f\left( \beta \right) =\left( \frac { \cot { \alpha } }{ 1+\cot { \alpha } } \right) \left( \frac { \cot { \beta } }{ 1+\cot { \beta } } \right) \\ \quad \quad \quad \quad \quad \quad \quad =\frac { \cot { \alpha } \cot { \beta } }{ 1+\cot { \alpha } +\cot { \beta } +\cot { \alpha } \cot { \beta } } \\

now, cot ( α + β ) = cot α cot β 1 cot α + cot β cot ( 5 π 4 ) = cot α cot β 1 cot α + cot β 1 = cot α cot β 1 cot α + cot β cot α cot β = cot α + cot β + 1 \cot { \left( \alpha +\beta \right) } =\frac { \cot { \alpha } \cot { \beta } -1 }{ \cot { \alpha } +\cot { \beta } } \\ \Rightarrow \cot { \left( \frac { 5\pi }{ 4 } \right) } =\frac { \cot { \alpha } \cot { \beta } -1 }{ \cot { \alpha } +\cot { \beta } } \\ \Rightarrow 1=\frac { \cot { \alpha } \cot { \beta } -1 }{ \cot { \alpha } +\cot { \beta } } \Rightarrow \cot { \alpha } \cot { \beta } =\cot { \alpha } +\cot { \beta } +1

so, f ( α ) . f ( β ) = cot α cot β cot α cot β + cot α cot β = 1 2 f\left( \alpha \right) .f\left( \beta \right) =\frac { \cot { \alpha } \cot { \beta } }{ \cot { \alpha } \cot { \beta } +\cot { \alpha } \cot { \beta } } =\frac { 1 }{ 2 }

so, the answer =1+2=3

I also did the same way!

Kartik Sharma - 6 years, 9 months ago

Log in to reply

Who asked you :P

Sanjana Nedunchezian - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...