Basic trigonometry

Geometry Level 4

What is the minimum value of

( sin x + csc x ) 2 + ( cos x + sec x ) 2 ? (\sin x + \csc x)^2 + (\cos x + \sec x)^2?

8 10 9 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shanthanu Rai
Feb 19, 2016

The given expression can be rewritten as,
s i n 2 x + c o s e c 2 x + c o s 2 x + s e c 2 x + 4 sin^2x+cosec^2x+cos^2x+sec^2x+4
= 4 + ( s i n 2 x + c o s 2 x ) + ( 1 + t a n 2 x ) + ( 1 + c o t 2 x ) 4+(sin^2x+cos^2x)+(1+tan^2x)+(1+cot^2x)
= 7 + t a n 2 x + c o t 2 x 7+tan^2x+cot^2x ...(1)

Using A.M \geqslant G.M.
t a n 2 x + c o t 2 x 2 t a n 2 x . c o t 2 x 2 \frac{tan^2x+cot^2x}{2}\geqslant\sqrt[2]{tan^2x.cot^2x}
t a n 2 x + c o t 2 x 2 \implies tan^2x+cot^2x\geqslant2 ...(2)

From (1) and (2),

( s i n x + c o s e c x ) 2 + ( c o s x + s e c x ) 2 9 (sinx+cosecx)^2+(cosx+secx)^2\geqslant9

Chew-Seong Cheong
Mar 28, 2016

S = ( sin x + csc x ) 2 + ( cos x + sec x ) 2 = ( sin x + 1 sin x ) 2 + ( cos x + 1 cos x ) 2 = sin 2 x + 2 + 1 sin 2 x + cos 2 x + 2 + 1 cos 2 x = 5 + 1 sin 2 x + 1 cos 2 x = 5 + 1 sin 2 x cos 2 x = 5 + 4 sin 2 2 x We note that sin 2 2 x 1 4 sin 2 2 x 4 5 + 4 = 9 \begin{aligned} S & = (\sin x + \csc x)^2 + (\cos x + \sec x)^2 \\ & = \left(\sin x + \frac{1}{\sin x} \right)^2 + \left(\cos x + \frac{1}{\cos x} \right)^2 \\ & = \sin^2 x + 2 + \frac{1}{\sin^2 x} + \cos^2 x + 2 + \frac{1}{\cos^2 x} \\ & = 5 + \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} \\ & = 5 + \frac{1}{\sin^2 x \cos^2 x} \\ & = 5 + \color{#3D99F6}{\frac{4}{\sin^2 2x}} \quad \quad \small \color{#3D99F6}{\text{We note that } \sin^2 2x \ge 1 \quad \Rightarrow \frac{4}{\sin^2 2x} \le 4} \\ & \le 5 + \color{#3D99F6}{4} = \boxed{9} \end{aligned}

Rishik Jain
Feb 19, 2016

( sin x + c o s e c x ) 2 = sin 2 x + c o s e c 2 x + 2 + ( cos x + sec x ) 2 = cos 2 x + sec 2 x + 2 ( sin 2 x + cos 2 x ) + 4 + ( c o s e c 2 x + sec 2 x ) 5 + ( cot 2 x + 1 + tan 2 x + 1 ) 7 + tan 2 x + cot 2 x (\sin x + \mathrm{cosec} x)^2=\sin^2x+\mathrm{cosec}^2x+2 \\ +(\cos x + \sec x)^2=\cos^2x+\sec^2x+2 \\ \implies (\sin^2x+\cos^2x)+4+(\mathrm{cosec}^2x+\sec^2x) \\ 5+(\cot^2x+1+\tan^2x+1) \\ 7+\tan^2x+\cot^2x

Now, the minimum value of tan 2 x + cot 2 x \tan^2x+\cot^2x is 2 2 which can easily be shown by AM-GM inequality . 7 + 2 = 9 \therefore 7+2 = \large\boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...