1 + sin α − 1 − sin α
If α ∈ [ 2 π , π ] , then find the value of the above expression.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Instead if converting to tan one could directly use,
1
±
sin
(
α
)
=
∣
∣
∣
sin
(
2
α
)
±
cos
(
2
α
)
∣
∣
∣
Log in to reply
Good solution. I will present it for you.
Did the same way +1!
Nice solution sir,+1!
Problem Loading...
Note Loading...
Set Loading...
Solution suggested by @Vighnesh Shenoy
1 + sin α − 1 − sin α = 1 + 2 sin 2 α cos 2 α − 1 − 2 sin 2 α cos 2 α = sin 2 2 α + cos 2 2 α + 2 sin 2 α cos 2 α − sin 2 2 α + cos 2 2 α − 2 sin 2 α cos 2 α = ( sin 2 α + cos 2 α ) 2 − ( sin 2 α − cos 2 α ) 2 = sin 2 α + cos 2 α − sin 2 α + cos 2 α = 2 cos 2 α
My solution
1 + sin α − 1 − sin α = 1 + 1 + tan 2 2 α 2 tan 2 α − 1 − 1 + tan 2 2 α 2 tan 2 α = 1 + tan 2 2 α tan 2 2 α + 2 tan 2 α + 1 − 1 + tan 2 2 α tan 2 2 α − 2 tan 2 α + 1 = 1 + tan 2 2 α tan 2 α + 1 − 1 + tan 2 2 α tan 2 α − 1 = 1 + tan 2 2 α 2 = sec 2 α 2 = 2 cos 2 α