Basics

Calculus Level 2

Evaluate lim x 0 ( e 3 x 1 x ) \displaystyle \lim_{x \to 0} (\frac{e^{3x}-1}{x})

Take e = lim x 0 ( 1 + 1 x ) x \displaystyle e =\lim_{x\to0} \left(1+\frac1x\right)^x .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Aug 22, 2015

lim x 0 ( e 3 x 1 x ) \Rightarrow \displaystyle \lim_{x \to 0 } (\frac{e^{3x}-1}{x})

lim 3 x 0 [ ( e 3 x 1 3 x ) × 3 ] \Rightarrow \displaystyle \lim_{ \color{#D61F06}{3x} \to 0 } [(\frac{e^{3x}-1}{\color{#D61F06}{3x}})×\color{#D61F06}{3}]

When : ( x 0 ) ( 3 x 0 ) (x \to 0) \Rightarrow (\color{#D61F06}{3x}\to 0) .

3 × lim y 0 ( e y 1 y ) \Rightarrow \displaystyle \color{#D61F06}{3}×\lim_{y \to 0}(\frac{e^{y}-1}{y})

Here : y = 3 x y=\color{#D61F06}{3x} .

( 3 × 1 ) 3 \Rightarrow (\color{#D61F06}{3}×1) \Rightarrow \color{#D61F06}{\boxed{3}}

cool solution man

Akash singh - 5 years, 9 months ago

Log in to reply

T h A n K s ! ! \huge ThAnKs!!

Akshat Sharda - 5 years, 9 months ago

I suppose that it might be worth mentioning that since

e y = 1 + y + y 2 2 ! + y 3 3 ! + . . . . , e^{y} = 1 + y + \dfrac{y^{2}}{2!} + \dfrac{y^{3}}{3!} + ....,

we know that e y 1 = y + O ( y 2 ) , e^{y} - 1 = y + O(y^{2}), and hence e y 1 y = 1 + O ( y ) , \dfrac{e^{y} - 1}{y} = 1 + O(y),

the limit of which as y 0 y \rightarrow 0 is 1. 1.

We could have also noted that e 3 x 1 x = e x 1 x × ( e 2 x + e x + 1 ) , \dfrac{e^{3x} - 1}{x} = \dfrac{e^{x} - 1}{x} \times (e^{2x} + e^{x} + 1),

and proceeded accordingly, or just directly used the expansion

e 3 x = 1 + 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 + . . . . e 3 x 1 = 3 x + O ( x 2 ) . e^{3x} = 1 + 3x + \dfrac{(3x)^{2}}{2!} + \dfrac{(3x)^{3}}{3} + ....\Longrightarrow e^{3x} - 1 = 3x + O(x^{2}).

Of course, there is always L'Hopital's rule, but that always seems like cheating when there are alternative ways of finding a limit. :)

Brian Charlesworth - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...