Rooting All The Way

Algebra Level 2

6 + 6 + 6 + = ? \large \sqrt{6+\sqrt{6+\sqrt{6+\cdots}}} = \, ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Justin Tuazon
Nov 13, 2014

L e t x = 6 + 6 + 6 + . . . x 2 = 6 + 6 + 6 + 6 + . . . S i n c e x = 6 + 6 + 6 + . . . x 2 = 6 + x x 2 x 6 = 0 ( x 3 ) ( x + 2 ) = 0 x = 3 ( x > 0 ) T h e r e f o r e , 6 + 6 + 6 + . . . = 3 Let\quad x=\sqrt { 6+\sqrt { 6+\sqrt { 6+... } } } \\ { \quad \quad x }^{ 2 }=6+\sqrt { 6+\sqrt { 6+\sqrt { 6+... } } } \\ Since\quad x=\sqrt { 6+\sqrt { 6+\sqrt { 6+... } } } \\ \quad \quad { x }^{ 2 }=6+x\\ \quad { x }^{ 2 }-x-6=0\\ (x-3)(x+2)=0\\ \quad x=3\quad (x>0)\\ \\ Therefore,\quad \\ \boxed { \sqrt { 6+\sqrt { 6+\sqrt { 6+... } } } =3 }

Jack Rawlin
Dec 22, 2014

Let x = 6 + 6 + 6 + x = \sqrt {6 + \sqrt {6 + \sqrt {6 + \ldots}}}

Since n = n 1 2 \sqrt {n} = n^\frac {1}{2}

n 2 = n \sqrt {n}^2 = n

x 2 = 6 + 6 + 6 + 2 = 6 + 6 + 6 + 6 + x^2 = \sqrt {6 + \sqrt {6 + \sqrt {6 + \ldots}}}^2 = 6 + \sqrt {6 + \sqrt {6 + \sqrt {6 + \ldots}}}

If we then take x x from x 2 x^2 we get

x 2 x = 6 x^2 - x = 6

This can be re-written as a quadratic equation

x 2 x 6 = 0 x^2 - x - 6 = 0

Putting this into the quadratic formula we get

x = 1 ± ( 1 ) 2 4 ( 1 ) ( 6 ) 2 x = \frac {1 \pm \sqrt {(-1)^2 - 4(1)(-6)}}{2}

This simplifies down to

x = 1 ± 25 2 x = \frac {1 \pm \sqrt {25}}{2}

Which then means that

x = 1 ± 5 2 x = \frac {1 \pm 5}{2}

This gives a positive and negative value of x x

x = 3 x = 3 and x = 2 x = -2

Since the question asked for a positive value the answer is 3 3

Parveen Soni
Nov 12, 2014

Consider given =y then given can be written as (6+y)^(1/2)=y
Squaring both sides we have y^2-y-6=0 i.e
(y+2)(y-3)=0 i.e y=-2 and y=+3 rejecting -ve value we have y=given=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...