Be careful!

Geometry Level 3

[ 1 sec 2 A cos 2 A + 1 csc 2 A sin 2 A ] cos 2 A sin 2 A = 1 2 cos 2 A sin 2 A 2 + cos 2 A sin 2 A \left[\dfrac{1}{\sec^2A-\cos^2A}+\dfrac{1}{\csc^2A-\sin^2A}\right]\cos^2A\sin^2A \\ = \dfrac{1-2\cos^2A\sin^2A}{2+\cos^2A\sin^2A} The above trigonometric identity is __________ \text{\_\_\_\_\_\_\_\_\_\_} .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 30, 2016

If A = π 4 A = \frac{\pi}{4} , then we have:

L H S = ( 1 sec 2 π 4 cos 2 π 4 + 1 csc 2 π 4 sin 2 π 4 ) cos 2 π 4 sin 2 π 4 = ( 1 2 1 2 + 1 2 1 2 ) 1 2 × 1 2 = 1 3 R H S = 1 2 cos 2 π 4 sin 2 π 4 2 + cos 2 π 4 sin 2 π 4 = 1 2 4 2 + 1 4 = 2 9 \begin{aligned} LHS & = \left( \frac{1}{\sec^2 \frac{\pi}{4} - \cos^2 \frac{\pi}{4}} + \frac{1}{\csc^2 \frac{\pi}{4} - \sin^2 \frac{\pi}{4}} \right) \cos^2 \frac{\pi}{4} \sin^2 \frac{\pi}{4} \\ & = \left( \frac{1}{2 - \frac{1}{2}} + \frac{1}{2 - \frac{1}{2}} \right) \frac{1}{2} \times \frac{1}{2} \\ & = \frac{1}{3} \\ RHS & = \frac{1-2 \cos^2 \frac{\pi}{4} \sin^2 \frac{\pi}{4}}{2+\cos^2 \frac{\pi}{4} \sin^2 \frac{\pi}{4}} \\ & = \frac{1-\frac{2}{4}}{2+\frac{1}{4}} \\ & = \frac{2}{9} \end{aligned}

L H S R H S The identity is f a l s e \Rightarrow LHS \le RHS \quad \Rightarrow \text{The identity is } \boxed{false} .

Simplifying the LHS in terms of 'sin A' & 'cos A' and then solving further shows that the coefficient of the trigonometrical term in the numerator of the RHS is '-1', not '-2'. Hence disproven.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...