Which Expression will I Factorise?!

Algebra Level 3

{ x 2 + y 2 = z 2 x y = z ( x + y ) 2 = 80 \begin{cases} x^{2}+y^{2}=z^{2} \\ xy=z \\ (x+y)^{2} = 80 \end{cases}

If the above system of equations holds true for some positive real numbers x x , y y , and z z , then find

z 4 ( x 3 y + x y 3 z 3 ) . \large \frac{z^{4}}{\left(\frac{x^3y+xy^3}{z^3}\right)} .

Hint: Use factorization.

Try another problem on my set! Let's Practice


The answer is 4096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Fidel Simanjuntak
Jul 18, 2016

( x + y ) 2 = x 2 + y 2 + 2 x y (x+y)^{2}=x^{2} + y^{2}+2xy

80 = z 2 + 2 z 80=z^{2}+2z

z 2 + 2 z 80 = 0 z^{2}+2z-80=0

( z + 10 ) ( z 8 ) = 0 (z+10)(z-8)=0

z z is a positive real number, so z = 8 z=8 .

Now, note that

x 3 y + x y 3 z 3 = ( x y ) ( x 2 + y 2 ) z 3 \frac{x^3y+xy^3}{z^3}=\frac{(xy)(x^2+y^2)}{z^3}

= ( z ) ( z 2 ) z 3 = 1 =\frac{(z)(z^2)}{z^3}=1

So,

z 4 ( x 3 y + x y 3 z 3 ) = z 4 \frac{z^{4}}{(\frac{x^3y+xy^3}{z^3})} = z^{4}

= 8 4 = 4096 =8^{4} = \boxed{4096}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...