Looks Unsolvable

Algebra Level 2

Solve for x x :

1 x + 9 + 1 x + 7 = 1 x + 10 + 1 x + 6 \dfrac{1}{x + 9} + \dfrac{1}{x + 7} = \dfrac{1}{x + 10} + \dfrac{1}{x + 6}


The answer is -8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

1 x + 9 + 1 x + 7 = 1 x + 10 + 1 x + 6 Let u = x + 8 , as 6 + 7 + 9 + 10 4 = 8 1 u + 1 + 1 u 1 = 1 u + 2 + 1 u 2 Rearrange 1 u + 1 1 u 2 = 1 u + 2 1 u 1 3 u 2 u 2 = 3 u 2 + u 2 Divide both sides by 3 1 u 2 u 2 = 1 u 2 + u 2 Taking reciprocal on both sides u 2 u 2 = u 2 + u 2 u = 0 Since u = x + 8 x = 8 \begin{aligned} \frac 1{x+\color{#3D99F6}9} + \frac 1{x+\color{#3D99F6}7} & = \frac 1{x+\color{#3D99F6}10} + \frac 1{x+\color{#3D99F6}6} & \small \color{#3D99F6} \text{Let }u = x + 8, \text{as }\frac {6+7+9+10}4 = 8 \\ \frac 1{u+1} + \frac 1{u-1} & = \frac 1{u+2} + \frac 1{u-2} & \small \color{#3D99F6} \text{Rearrange} \\ \frac 1{u+1} - \frac 1{u-2} & = \frac 1{u+2} - \frac 1{u-1} \\ \frac {-3}{u^2-u-2} & = \frac {-3}{u^2+u-2} & \small \color{#3D99F6} \text{Divide both sides by }-3 \\ \frac 1{u^2-u-2} & = \frac 1{u^2+u-2} & \small \color{#3D99F6} \text{Taking reciprocal on both sides} \\ u^2-u-2 & = u^2+u-2 \\ \implies u & = 0 & \small \color{#3D99F6} \text{Since }u=x+8 \\ \implies x & = \boxed{-8} \end{aligned}

Ram Mohith
Jun 20, 2018

The given expression is 1 x + 9 + 1 x + 7 = 1 x + 10 + 1 x + 6 \dfrac{1}{x + 9} + \dfrac{1}{x + 7} = \dfrac{1}{x + 10} + \dfrac{1}{x + 6}

First we will take LCM : x + 9 + x + 7 ( x + 9 ) ( x + 7 ) = x + 10 + x + 6 ( x + 10 ) ( x + 7 ) 2 x + 16 ( x + 9 ) ( x + 7 ) = 2 x + 16 ( x + 10 ) ( x + 7 ) \begin{aligned} \\ \dfrac{x + 9 + x + 7}{(x + 9)(x + 7)} = \dfrac{x + 10 + x +6}{(x + 10)(x + 7)}\\ \\ \dfrac{2x + 16}{(x + 9)(x + 7)} = \dfrac{2x + 16}{(x + 10)(x + 7)} \\ \end{aligned} Now, we should cancel ( 2 x + 16 ) (2x + 16) . If we cancel we will not get any real solution.

2 x + 16 ( x + 9 ) ( x + 7 ) 2 x + 16 ( x + 10 ) ( x + 7 ) = 0 \dfrac{2x + 16}{(x + 9)(x + 7)} - \dfrac{2x + 16}{(x + 10)(x + 7)} = 0

( 2 x + 16 ) × ( 1 ( x + 9 ) ( x + 7 ) 1 ( x + 10 ) ( x + 7 ) ) = 0 (2x + 16) \times (\dfrac{1}{(x + 9)(x + 7)} - \dfrac{1}{(x + 10)(x + 7)}) = 0

\implies 2x + 16 = 0 \space \space (or) \space \space \require {\cancel} \cancel{\dfrac{1}{(x + 9)(x + 7)} - \dfrac{1}{(x + 10)(x + 7)} = 0}

We should ignore the second part because if we solve it we will get 60 = 63 60 = 63

So, the only part left is 2 x + 16 = 0 2x + 16 = 0

2 x = 16 \implies 2x = -16

x = 8 \implies \color{#20A900} x = -8

There is a typo in first line.

This:

1 x + 9 + 12 x + 7 = 1 x + 10 + 1 x + 6 \dfrac{1}{x + 9} + \dfrac{12}{x + 7} = \dfrac{1}{x + 10} + \dfrac{1}{x + 6}

It's should be:

1 x + 9 + 1 x + 7 = 1 x + 10 + 1 x + 6 \dfrac{1}{x + 9} + \dfrac{1}{x + 7} = \dfrac{1}{x + 10} + \dfrac{1}{x + 6}

Matin Naseri - 2 years, 11 months ago

Log in to reply

Thanks for informing. I have fixed the issue.

Ram Mohith - 2 years, 11 months ago
Naren Bhandari
Aug 9, 2018

Rearrange the expression as 1 x + 9 1 x + 10 = 1 x + 6 1 x + 7 ( x + 9 ) ( x + 10 ) = ( x + 7 ) ( x + 6 ) x = 42 90 6 = 8 \dfrac{1}{x+9}-\dfrac{1}{x+10} = \dfrac{1}{x+6} - \dfrac{1}{x+7}\implies \\ \,(x+9)\,(x+10) = \,(x+7)\,(x+6)\implies x = \dfrac{42-90}{6} = \boxed{-8}

why divide by 6? and what is this!

Aryan Gupta - 2 years, 8 months ago

Log in to reply

Just simply the LHS and THE.

Naren Bhandari - 2 years, 8 months ago
Razzi Masroor
Mar 9, 2019

Letting z = x+8 gives 1 z + 1 \frac{1}{z+1} + 1 z 1 \frac{1}{z-1} = 1 z + 2 \frac{1}{z+2} + 1 z 2 \frac{1}{z-2} . Making common denominators on both sides gives 2 z z 2 1 \frac{2z}{z^2-1} = 2 z z 2 4 \frac{2z}{z^2-4} If z is not 0 then we can cross multiply both sides and then divide by 2z to get z^2-1 =z^2-4 which is obviously impossible. So z=0 which means x=-8 and you can see this works .

Kyle T
Mar 6, 2019

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...