Be careful, a , b , c 0 a,b,c\ne0

Algebra Level 3

Let a a , b b , and c c be non-zero real numbers such that { a 2 + a = b 2 b 2 + b = c 2 c 2 + c = a 2 . \begin{cases} \begin{aligned} a^2+a&=b^2 \\b^2+b&=c^2 \\c^2+c&=a^2. \end{aligned} \end{cases} Find the value of ( a b ) ( b c ) ( c a ) (a-b)(b-c)(c-a) .


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Mar 24, 2018

{ a 2 + a = b 2 b 2 + b = c 2 c 2 + c = a 2 { ( a b ) ( a + b ) = a ( b c ) ( b + c ) = b ( c a ) ( c + a ) = c \begin{cases} a^2 +a = b^2 \\ b^2 +b =c^2 \\ c^2 +c =a^2 \end{cases} \implies \begin{cases} (a-b)(a+b)= -a \\ (b-c)(b+c) = -b \\ (c-a)(c+a) = -c \end{cases} Note that a + b + c = 0 a+b+c=0 ( on adding the equations above). Multiplying the Right hand side equation ( a b ) ( b c ) ( c a ) = ( a b c ) ( a + b ) ( b + c ) ( c + a ) ( a b ) ( b c ) ( c a ) = ( a b c ) ( c ) ( b ) ( a ) c c c c c a + b + c = 0 ( a b ) ( b c ) ( c a ) = 1 \begin{aligned} &(a-b)(b-c)(c-a) = \dfrac{-(abc)}{(a+b)(b+c)(c+a)} \\& (a-b)(b-c)(c-a) = \dfrac{-(abc)}{(-c)(-b)(-a)} \phantom{ccccc} {\color{#3D99F6} a+b+c =0 } \\& (a-b)(b-c)(c-a) =\boxed{1}\end{aligned}

Chew-Seong Cheong
Mar 24, 2018

{ a 2 + a = b 2 . . . ( 1 ) b 2 + b = c 2 . . . ( 2 ) c 2 + c = a 2 . . . ( 3 ) \begin{cases} a^2 + a = b^2 & ...(1) \\ b^2 + b = c^2 & ...(2) \\ c^2 + c = a^2 & ...(3) \end{cases}

( 1 ) + ( 2 ) + ( 3 ) : a 2 + b 2 + c 2 + a + b + c = a 2 + b 2 + c 2 a + b + c = 0 \begin{aligned} (1)+(2)+(3): \quad a^2+b^2+c^2 +a+b+c & = a^2+b^2+c^2 \\ \implies a+b+c & = 0 \end{aligned}

From (1):

a 2 + a = b 2 a 2 b 2 = a ( a b ) ( a + b ) = a ( a b ) = a a + b = a c Note that a + b + c = 0 \begin{aligned} a^2 + a & = b^2 \\ a^2 - b^2 & = - a \\ (a-b)(a+b) & = - a \\ (a-b) & = \frac {-a}{\color{#3D99F6}a+b} = \frac a{\color{#3D99F6}c} & \small \color{#3D99F6} \text{Note that }a+b+c =0 \end{aligned}

Similarly, b c = b a b-c = \dfrac ba and c a = c b c-a=\dfrac cb and ( a b ) ( b c ) ( c a ) = a c × b a × c b = 1 (a-b)(b-c)(c-a) = \dfrac ac \times \dfrac ba \times \dfrac cb = \boxed{1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...