Be careful to the learnt formulas...

Geometry Level 2

Find the value of ( tan 1 1 + tan 1 2 + tan 1 3 ) \left( \tan^{-1}1+\tan^{-1}2+\tan^{-1}3 \right) .


Try more Trigonometry Problems .
π -\pi 0 0 π \pi 2 tan 1 3 -2\tan^{-1}3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Pranjal Jain
Dec 11, 2014

Assume θ = t a n 1 1 + t a n 1 2 + t a n 1 3 \theta=tan^{-1}1+tan^{-1}2+tan^{-1}3

Taking t a n tan both sides,

t a n θ = 1 + 2 + 3 ( 1 × 2 × 3 ) 1 ( 1 × 2 + 2 × 3 + 3 × 1 ) = 0 tan\theta=\dfrac{1+2+3-(1×2×3)}{1-(1×2+2×3+3×1)}=0

So we can say that θ = n π \theta=n\pi

Now we will use estimations to find out the integer n.

We know

  • t a n 1 1 = π 4 , tan^{-1}1=\frac{\pi}{4},
  • π 2 > t a n 1 2 > π 4 \frac{\pi}{2}>tan^{-1}2>\frac{\pi}{4}
  • π 2 > t a n 1 3 > π 4 \frac{\pi}{2}>tan^{-1}3>\frac{\pi}{4}

Now we can estimate θ \theta as π 4 + π 2 + π 2 = 5 π 4 > θ > π 4 + π 4 + π 4 = 3 π 4 \frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2}=\frac{5\pi}{4}>\theta>\frac{\pi}{4}+\frac{\pi}{4}+\frac{\pi}{4}=\frac{3\pi}{4}

So possible value of n can be 1 1 only, proving θ = π \theta=\pi

See the image below; The formula is IMPORTANT:

Jake Lai
Dec 13, 2014

See the Three Square Problem .

tan 1 1 + tan 1 2 + tan 1 3 = 3 π 2 ( α + β + γ ) = π \tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \frac{3 \pi}{2} - (\alpha + \beta + \gamma) = \boxed{\pi}

(Angles α , β , γ \alpha, \beta, \gamma are defined in the video.)

Divyansh Tyagi
Dec 13, 2014

tan^-1(1) + tan^-1(2) + tan^-1(3) = pi/4 + tan^-1(2) + tan^-1(3) \Rightarrow pi/4 + pi + tan^-1(\frac {2+3}{1-2 3}) because [tan^-1(A) + tan^-1(B) =pi + tan^-1(\frac {A+B}{1 - A B)}] when A*B > 1 \Rightarrow pi/4 + pi + tan^-1(-1) \Rightarrow pi/4 + pi + (-pi/4) \Rightarrow pi/4 + pi - pi/4 \Rightarrow pi.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...