A calculus problem by Simran Bajaj

Calculus Level 3

What is the value of f ( 0 ) f(0) such that the function f : [ 0 , ) R f: [0, \infty) \rightarrow \mathbb{R} given by f ( x ) = ( 1 + tan 2 x ) 1 / ( 2 x ) f(x)=( 1+ \tan^2 \sqrt x)^{1/(2x)} is continuous everywhere?

0 0 1 1 e 1 / 2 e^{-1/2} e 1 / 2 e^{1/2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nowras Otmen
Nov 12, 2016

To find the value for which the function is continous at 0, we evaluate the limit lim x 0 + f ( x ) \lim_{x\rightarrow 0^{+}}f(x) .

lim x 0 + f ( x ) = lim x 0 + ( 1 + tan 2 x ) 1 / ( 2 x ) \lim_{x\rightarrow 0^{+}}f(x)=\lim_{x\rightarrow 0^{+}}(1+\tan^2 \sqrt{x})^{1/(2x)}

Since sec 2 x = 1 + tan 2 x \sec^2 x=1+\tan^2 x , we can rewrite the limit as

lim x 0 + ( 1 + tan 2 x ) 1 / ( 2 x ) = lim x 0 + ( sec 2 x ) 1 / ( 2 x ) \lim_{x\rightarrow 0^{+}}(1+\tan^2 \sqrt{x})^{1/(2x)}=\lim_{x\rightarrow 0^{+}}(\sec^2 \sqrt x)^{1/(2x)}

Now, we consider that ( sec 2 x ) 1 / ( 2 x ) = exp ( 2 ln sec x 2 x ) (\sec^2 \sqrt x)^{1/(2x)}=\text{exp}\left(\cfrac{2\ln \sec \sqrt x}{2x}\right) and once again rewrite the limit

lim x 0 + ( sec 2 x ) 1 / ( 2 x ) = lim x 0 + exp ( 2 ln sec x 2 x ) \lim_{x\rightarrow 0^{+}}(\sec^2 \sqrt x)^{1/(2x)}=\lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{2\ln \sec \sqrt x}{2x}\right)

Now, we use L'Hopital's repeatedly and apply the limit

lim x 0 + exp ( ln sec x x ) = lim x 0 + exp ( sec x tan x 2 x sec x ) = lim x 0 + exp ( tan x 2 x ) \lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{\ln \sec \sqrt x}{x}\right)=\lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{\sec \sqrt {x} \tan \sqrt {x}}{2\sqrt {x} \sec \sqrt x}\right)=\lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{\tan \sqrt x}{2\sqrt x}\right)

lim x 0 + exp ( tan x 2 x ) = lim x 0 + exp ( sec 2 x 2 2 x 2 x ) = lim x 0 + exp ( sec 2 x 2 ) = exp ( 1 / 2 ) = e 1 / 2 = f ( 0 ) . \lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{\tan \sqrt x}{2\sqrt x}\right)=\lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{\sec^2 \sqrt x}{2\cdot \cfrac{2\sqrt x}{2\sqrt x}}\right)=\lim_{x\rightarrow 0^{+}}\text{exp}\left(\cfrac{\sec^2 \sqrt x}{2}\right)=\text{exp}(1/2)=e^{1/2}=f(0).

Tapas Mazumdar
Feb 4, 2017

Since we need to find the value of f ( 0 ) f(0) for which the function is continuous everywhere, we should find the limit of f ( x ) f(x) as x x approaches 0 0 from the positive side.

Thus

f ( x ) = ( 1 + tan 2 x ) 1 / ( 2 x ) ln f ( x ) = ln ( 1 + tan 2 x ) 2 x lim x 0 + ln f ( x ) = lim x 0 + ln ( 1 + tan 2 x ) 2 x = lim x 0 + 1 1 + tan 2 x 2 tan x sec 2 x 1 2 x 2 Using L’ Hopital’s Rule for the 0 0 case here = lim x 0 + 1 2 tan x x = 1 2 As lim θ 0 tan θ θ = 1 lim x 0 + f ( x ) = e 1 / 2 \begin{aligned} & f(x) &=& {(1+\tan^2 \sqrt{x})}^{1/{(2x)}} \\ \implies & \ln f(x) &=& \dfrac{\ln (1+\tan^2 \sqrt{x})}{2x} \\ \implies & \displaystyle \lim_{x \to 0^{+}} \ln f(x) &=& \lim_{x \to 0^{+}} \dfrac{\ln (1+\tan^2 \sqrt{x})}{2x} \\ & &=& \lim_{x \to 0^{+}} \dfrac{\frac{1}{1+ \tan^2 \sqrt{x}} \cdot 2 \tan \sqrt{x} \cdot \sec^2 \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}}{2} & & \small \color{#3D99F6}{\text{Using L' Hopital's Rule for the } \dfrac 00 \text{ case here}} \\ & &=& \lim_{x \to 0^{+}} \dfrac 12 \cdot \dfrac{\tan \sqrt{x}}{\sqrt{x}} \\ & &=& \dfrac 12 & & \small \color{#3D99F6}{\text{As } \lim_{\theta \to 0} \dfrac{\tan \theta}{\theta} = 1} \\ \implies & \lim_{x \to 0^{+}} f(x) &=& \boxed{e^{1/2}} \end{aligned}

But isn't 1 = 1 1^{\infty}=1 as we put zero we get that.

Sahil Silare - 4 years, 4 months ago

Log in to reply

Ahha! A common misconception. Let me show you why 1 1^{\infty} is an indeterminate from.

First suppose

1 = g ( t ) h ( t ) 1^{\infty} = {g(t)}^{h(t)}

where g ( t ) g(t) and h ( t ) h(t) are two different functions which give 1 1 and \infty for some particular t t , eg.- g ( t ) = 1 + t g(t) = 1+t and h ( t ) = 1 t h(t) = \left|\dfrac 1t \right| (here t = 0 t=0 ).

Now, we'll manipulate some things here

g ( t ) h ( t ) = e ln ( g ( t ) h ( t ) ) = exp { h ( t ) ln ( g ( t ) ) } = exp { ln ( g ( t ) ) 1 h ( t ) } \begin{aligned} {g(t)}^{h(t)} &=& e^{\ln \left({g(t)}^{h(t)} \right)} \\ &=& \text{exp} \left\{ h(t) \ln \left( g(t) \right) \right\} \\ &=& \text{exp} \left\{ \dfrac{\ln \left( g(t) \right)}{\frac{1}{h(t)}} \right\} \end{aligned}

Putting back our value of g ( t ) g(t) and h ( t ) h(t) , we get

1 = exp ( 0 0 ) 1^{\infty} = \text{exp} \left( \dfrac 00 \right)

Thus, we arrive e e raised to the indeterminate form of 0 / 0 0/0 .

However, for lim n 1 n \displaystyle \lim_{n \to \infty} 1^n the answer is 1 1 .

Tapas Mazumdar - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...