Be Vigilant

Geometry Level 4

( tan 2 ϕ 2 ) ( sin 2 ϕ 1 ) = 0 \large (\tan^2 \phi - 2)(\sin^2 \phi - 1) = 0

How many values are there for ϕ [ 2 π , 2 π ] \phi \in [-2\pi, 2\pi] such that the above equation is true?

11 10 8 12 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravneet Singh
Apr 16, 2018

( tan 2 ϕ 2 ) ( sin 2 ϕ 1 ) = 0 \begin{aligned} (\tan^2 \phi -2)(\sin^2 \phi - 1) & = 0 \end{aligned}

For 0 ϕ 2 π 0 \le \phi \le 2\pi ,

{ tan 2 ϕ 2 = 0 tan ϕ = { 2 ϕ = { tan 1 2 in the first quadrant π + tan 1 2 in the third quadrant 2 ϕ = { π tan 1 2 in the second quadrant 2 π tan 1 2 in the fourth quadrant sin 2 ϕ 1 = 0 sin ϕ = { 1 ϕ = π 2 1 ϕ = 3 π 2 \implies \begin{cases} \tan^2 \phi - 2 = 0 & \implies \tan \phi = \begin{cases} \sqrt 2 & \implies \phi = \begin{cases} \tan^{-1} \sqrt 2 & \small \text{in the first quadrant} \\ \pi + \tan^{-1} \sqrt 2 & \small \text{in the third quadrant} \end{cases} \\ - \sqrt 2 & \implies \phi = \begin{cases} \pi - \tan^{-1} \sqrt 2 & \small \text{in the second quadrant} \\ 2 \pi - \tan^{-1} \sqrt 2 & \small \text{in the fourth quadrant} \end{cases} \end{cases} \\ \sin^2 \phi - 1 = 0 & \implies \sin \phi = \begin{cases} 1 & \implies \phi = \dfrac \pi 2 \\ -1 & \implies \phi = \dfrac {3\pi}2 \end{cases} \end{cases}

but at ϕ = π 2 \phi = \dfrac{\pi}{2} and at ϕ = 3 π 2 \phi = \dfrac{3\pi}{2} the tan \tan becomes undefined, and thus whole equation takes the indeterminate form of × 0 \infty \times 0 , and hence cannot be equal to zero.

Therefore there are 4 solutions for ϕ [ 0 , 2 π ] \phi \in [0, 2\pi] and 8 \boxed{8} solutions for ϕ [ 2 π , 2 π ] \phi \in [-2\pi, 2\pi] .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...