Beautiful But So Dangerous

Algebra Level 4

x 3 y 4 z 3 ( x 4 + y 4 ) ( x y + z 2 ) 3 + y 3 z 4 x 3 ( y 4 + z 4 ) ( y z + x 2 ) 3 + z 3 x 4 y 3 ( z 4 + x 4 ) ( z x + y 2 ) 3 \small \frac{x^3y^4z^3}{(x^4+y^4)(xy+z^2)^3}+\frac{y^3z^4x^3}{(y^4+z^4)(yz+x^2)^3}+\frac{z^3x^4y^3}{(z^4+x^4)(zx+y^2)^3}

Over all positive reals x , y x, y and z z , the maximum of the expression above can be expressed as m n \dfrac{m}{n} , where m m and n n are coprime positive integers. Find m + n m+n .


Source: VMO 2014 problem 2 day 2.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Munem Shahriar
Oct 1, 2017

Suppose M = x 3 y 4 z 3 ( x 4 + y 4 ) ( x y + z 2 ) 3 + y 3 z 4 x 3 ( y 4 + z 4 ) ( y z + x 2 ) 3 + z 3 x 4 y 3 ( z 4 + x 4 ) ( z x + y 2 ) 3 M = \dfrac{x^3y^4z^3}{(x^4+y^4)(xy+z^2)^3}+\dfrac{y^3z^4x^3}{(y^4+z^4)(yz+x^2)^3}+\dfrac{z^3x^4y^3}{(z^4+x^4)(zx+y^2)^3}

Put x y = a ; y z = b ; z x = c ; a b c = 1 \dfrac{x}{y} = a ; \dfrac{y}{z} =b; \dfrac{z}{x} = c; abc = 1

M = 1 ( a 4 + 1 ) ( b + c ) 3 M = \sum \dfrac{1}{(a^4 + 1)(b+c)^3}

We have

1 ( a 4 + 1 ) ( b + c ) 3 1 ( a 2 + 1 ) 2 2 ( b + c ) 3 1 ( a + 1 ) 4 8 ( b + c ) 3 = 8 ( a 4 + 1 ) ( b + c ) 3 8 16 a 2 4 b c ( b 2 + c 2 ) \dfrac{1}{(a^4 + 1)(b+c)^3} \leq \dfrac{1}{\frac{(a^{2}+1)^{2}}{2}(b+c)^{3}} \leq \dfrac{1}{\frac{(a+1)^4}{8} (b+c)^3} = \dfrac{8}{(a^4 + 1)(b+c)^3} \leq \dfrac{8}{16a^2 4bc(b^2+c^2)}

= 1 8 a ( b 2 + c 2 ) 1 16 = \dfrac{1}{8a(b^2+c^2)} \le \dfrac{1}{16}

The maximum is 3 16 \dfrac{3}{16}

Hence 3 + 16 = 19 3 + 16 = \boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...