n = 0 ∑ ∞ ( ( 2 n + 1 ) ( ( 2 n + 2 ) 2 + ( 3 n + 1 ) ( 3 n + 2 ) ( 3 n + 3 ) 3 + ( 4 n + 1 ) ( 4 n + 2 ) ( 4 n + 3 ) ( 4 n + 4 ) 4 ) ( − 1 ) n ( n + 1 ) If the closed form the above sum can be expressed as b a lo g a + c π ( d + a ) , where a and b are primes, Find the value of a + b + c + d .
Source: Romanian Mathematical Mazagine
This problem was proposed by Sir. Srinivasa Raghava, India in RMM, where proposer supposed to show the closed form .
For more problems you may wish to visit RMM .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
My approach
Note that given summation can be further simplified to n = 0 ∑ ∞ ( ( 2 n + 1 ) ( − 1 ) n + ( 3 m + 1 ) ( 3 m + 2 ) ( − 1 ) n + ( 4 m + 1 ) ( 4 m + 2 ) ( 4 m + 3 ) ( − 1 ) n ) Now let us make individual evaluation of the each sum. Φ 1 = n = 0 ∑ ∞ ( 2 n + 1 ) ( − 1 ) n = ∫ 0 1 1 + x 2 1 d x = 4 π Similarly, Φ 2 = n = 0 ∑ ∞ ( 3 m + 1 ) ( 3 m + 2 ) ( − 1 ) n = n = 0 ∑ ∞ ( ( 3 m + 1 ) ( − 1 ) n − ( 3 m + 2 ) ( − 1 ) n ) = n = 0 ∑ ∞ ( n + 1 ( − 1 ) n − 3 1 n + 1 ( − 1 ) n ) = 3 2 n = 0 ∑ ∞ n + 1 ( − 1 ) n = 3 2 ∫ 0 1 1 + x 1 d x = 3 2 lo g 2 Finally, Φ 3 = n = 0 ∑ ∞ ( 4 n + 1 ) ( 4 n + 2 ) ( 4 n + 3 ) ( − 1 ) n Since ( 4 n + 1 ) ( 4 n + 2 ) ( 4 n + 3 ) ( − 1 ) n = 2 ( − 1 ) n ( 4 n + 1 1 − 4 n + 2 2 + 4 n + 3 1 ) Now note that above decompose portion can be further written as Φ 3 = 2 1 n = 0 ∑ ∞ ∫ 0 1 ( x 4 n + x 4 n + 2 ) d x − 2 1 n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n = 2 1 ∫ 0 1 ( 1 + x 4 1 + 1 + x 4 x 2 ) d x − 2 1 ( n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n ) = 2 1 ∫ 0 1 ( 1 + x 4 1 + x 2 − ( 1 + x 2 ) 1 ) d x = 2 I − 2 ⋅ 4 π = 4 2 π − 8 π Thus we have then Φ 1 + Φ 2 + Φ 3 = 3 2 lo g 2 + 8 π ( 1 + 2 ) Making a + b + c + d = 1 4 .
Note I = ∫ 1 + x 4 1 + x 2 d x = 2 1 ∫ 0 1 x 4 + 1 2 ( x 2 + 1 ) d x since x 4 + 1 = ( x 2 + 2 x + 1 ) ( x 2 − 2 x + 1 ) Hence I = ∫ 2 1 ( x 2 + 2 x + 1 1 + x 2 − 2 x + 1 1 ) d x = 2 2 ( tan − 1 ( x 2 + 1 ) + tan − 1 ( x 2 − 1 ) ) + C setting the limit gives = 2 1 tan − 1 ( 1 − x 2 2 x ) = 2 2 π