The value of integral ∫ 0 1 ln ( x ) ln ( 1 − x ) d x can be written as a − c π b where a , b and c are positive integers. Find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yep! Did nearly the same except that I used gamma function.
Yep that's how it's done +1
Did the same thing. Nice problem :)
Almost same ..... But I used substitution of x = e t
A bit of an overpowered solution, but it's more intuitive and easier to spot immediately with the right knowledge:
Consider the beta function B ( x , y ) = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 d t = Γ ( x + y ) Γ ( x ) Γ ( y ) . Taking the partial derivatives wrt x and y , we have
∂ x ∂ ∂ y ∂ B ( x , y ) = ∫ 0 1 ∂ x ∂ ∂ y ∂ t x − 1 ( 1 − t ) y − 1 d t = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 ln t ln ( 1 − t ) d t
as well as
∂ x ∂ ∂ y ∂ B ( x , y ) = ∂ x ∂ ∂ y ∂ Γ ( x + y ) Γ ( x ) Γ ( y ) = ( [ ψ ( x ) − ψ ( x + y ) ] [ ψ ( y ) − ψ ( x + y ) ] − ψ ( 1 ) ( x + y ) ) B ( x , y )
where ψ is the digamma function. Thus, evaluated at x = 1 , y = 1 , we have
∫ 0 1 ln t ln ( 1 − t ) d t = ( [ ψ ( 1 ) − ψ ( 2 ) ] 2 − ψ ( 1 ) ( 2 ) ) B ( 1 , 1 ) = [ ψ ( 1 ) − ψ ( 2 ) ] 2 − ψ ( 1 ) ( 2 )
We note that ψ ( z ) = − γ + H z − 1 = − γ + ∫ 0 1 1 − t 1 − t z − 1 d t . Hence,
ψ ( 1 ) ( 2 ) = ∫ 0 1 d z d 1 − t 1 − t z − 1 ∣ ∣ ∣ ∣ z = 2 d t = ∫ 0 1 t − 1 t ln t d t
Substituting u = 1 − t , we get
∫ 0 1 t − 1 t ln t d t = ∫ 0 1 u − ( 1 − u ) ln ( 1 − u ) d u = n = 1 ∑ ∞ ∫ 0 1 n u n − 1 − u n d u = n = 1 ∑ ∞ n 2 1 − n ( n + 1 ) 1 = 6 π 2 − 1
Therefore, we have
[ ψ ( 1 ) − ψ ( 2 ) ] 2 − ψ ( 1 ) ( 2 ) = [ − γ − ( − γ + H 1 ) ] 1 − ( 6 π 2 − 1 ) = 2 − 6 π 2
Powerful !
Problem Loading...
Note Loading...
Set Loading...
Step one) Using the familiar series 1 − x 1 = 1 + x + x 2 + … 0 < x < 1 and integrating it for writing ln ( 1 − x ) as − n = 1 ∑ ∞ n x n Step two) Rearrange the integral as I = ∫ 0 1 ln ( x ) ( − n = 1 ∑ ∞ n x n ) d x = − n = 1 ∑ ∞ n 1 ∫ 0 1 ln ( x ) x n d x = − n = 1 ∑ ∞ n 1 I ′ Step three) Applying integration by parts for the integral I ′ = ∫ 0 1 ln ( x ) x n d x with u = x n and d v = ln ( x ) d x which gives I ′ = ( x n ( x ln ( x ) − x ) ) 0 1 − n ( ∫ 0 1 ( x ln ( x ) − x ) x n − 1 d x ) I ′ = − 1 − n ( ∫ 0 1 ( x n ln ( x ) − x n ) d x ) I ′ = − 1 − n ( I ′ − ∫ 0 1 x n d x ) = − 1 − n ( I ′ − n + 1 1 ) I ′ = − ( n + 1 ) 2 1 Step four) Evaluating the resulting sum I = − n = 1 ∑ ∞ n 1 I ′ = n = 1 ∑ ∞ n ( n + 1 ) 2 1 I = n = 1 ∑ ∞ n ( n + 1 ) 1 − n = 1 ∑ ∞ ( n + 1 ) 2 1 = 1 − ( 6 π 2 − 1 ) = 2 − 6 π 2