Natural log integral

Calculus Level 4

The value of integral 0 1 ln ( x ) ln ( 1 x ) d x \int_{0}^{1} \ln(x) \ln(1-x) \ \text{d} x can be written as a π b c a-\frac{\pi^{b}}{c} where a a , b b and c c are positive integers. Find a + b + c a+b+c .

Check out my calculus set .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kazem Sepehrinia
Mar 25, 2015

Step one) Using the familiar series 1 1 x = 1 + x + x 2 + 0 < x < 1 \frac{1}{1-x}=1+x+x^2+\dots \ \ \ \ 0<x<1 and integrating it for writing ln ( 1 x ) \ln(1-x) as n = 1 x n n -\sum_{n=1}^{\infty} \frac{x^n}{n} Step two) Rearrange the integral as I = 0 1 ln ( x ) ( n = 1 x n n ) d x = n = 1 1 n 0 1 ln ( x ) x n d x = n = 1 1 n I I=\int_{0}^{1} \ln(x) \left(-\sum_{n=1}^{\infty} \frac{x^n}{n}\right) \ \text{d}x =-\sum_{n=1}^{\infty} \frac{1}{n}\int_{0}^{1} \ln(x) x^n \ \text{d}x=-\sum_{n=1}^{\infty} \frac{1}{n} I' Step three) Applying integration by parts for the integral I = 0 1 ln ( x ) x n d x I'=\int_{0}^{1} \ln(x) x^n \ \text{d}x with u = x n u=x^n and d v = ln ( x ) d x \text{d}v=\ln(x) \text{d}x which gives I = ( x n ( x ln ( x ) x ) ) 0 1 n ( 0 1 ( x ln ( x ) x ) x n 1 d x ) I'=\left(x^n (x \ln(x)-x) \right)_{0}^{1} - n \left(\int_{0}^{1} (x \ln(x)-x) x^{n-1} \text{d}x \right) I = 1 n ( 0 1 ( x n ln ( x ) x n ) d x ) I'=-1-n\left(\int_{0}^{1} (x^n \ln(x)-x^n) \text{d}x \right) I = 1 n ( I 0 1 x n d x ) = 1 n ( I 1 n + 1 ) I'=-1-n\left(I'-\int_{0}^{1} x^n \text{d}x \right)=-1-n\left(I'-\frac{1}{n+1} \right) I = 1 ( n + 1 ) 2 I'=-\frac{1}{(n+1)^2} Step four) Evaluating the resulting sum I = n = 1 1 n I = n = 1 1 n ( n + 1 ) 2 I=-\sum_{n=1}^{\infty} \frac{1}{n} I' =\sum_{n=1}^{\infty} \frac{1}{n(n+1)^2} I = n = 1 1 n ( n + 1 ) n = 1 1 ( n + 1 ) 2 = 1 ( π 2 6 1 ) = 2 π 2 6 I=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}- \sum_{n=1}^{\infty}\frac{1}{(n+1)^2}=1-\left(\frac{\pi^2}{6}-1 \right)=2-\frac{\pi^2}{6}

Yep! Did nearly the same except that I used gamma function.

Kartik Sharma - 6 years, 2 months ago

Yep that's how it's done +1

Oussama Boussif - 6 years, 2 months ago

Did the same thing. Nice problem :)

Aalap Shah - 6 years, 2 months ago

Almost same ..... But I used substitution of x = e t x=e^t

Karan Shekhawat - 6 years, 2 months ago
Jake Lai
Nov 21, 2015

A bit of an overpowered solution, but it's more intuitive and easier to spot immediately with the right knowledge:

Consider the beta function B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t = Γ ( x ) Γ ( y ) Γ ( x + y ) \displaystyle \mathrm{B}(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1} \ dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} . Taking the partial derivatives wrt x x and y y , we have

x y B ( x , y ) = 0 1 x y t x 1 ( 1 t ) y 1 d t = 0 1 t x 1 ( 1 t ) y 1 ln t ln ( 1 t ) d t \frac{\partial}{\partial x} \frac{\partial}{\partial y} \mathrm{B}(x,y) = \int_0^1 \frac{\partial}{\partial x} \frac{\partial}{\partial y} t^{x-1}(1-t)^{y-1} \ dt = \int_0^1 t^{x-1}(1-t)^{y-1}\ln t \ln(1-t) \ dt

as well as

x y B ( x , y ) = x y Γ ( x ) Γ ( y ) Γ ( x + y ) = ( [ ψ ( x ) ψ ( x + y ) ] [ ψ ( y ) ψ ( x + y ) ] ψ ( 1 ) ( x + y ) ) B ( x , y ) \frac{\partial}{\partial x} \frac{\partial}{\partial y} \mathrm{B}(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = ([\psi(x)-\psi(x+y)][\psi(y)-\psi(x+y)]-\psi^{(1)}(x+y))\mathrm{B}(x,y)

where ψ \psi is the digamma function. Thus, evaluated at x = 1 , y = 1 x=1,y=1 , we have

0 1 ln t ln ( 1 t ) d t = ( [ ψ ( 1 ) ψ ( 2 ) ] 2 ψ ( 1 ) ( 2 ) ) B ( 1 , 1 ) = [ ψ ( 1 ) ψ ( 2 ) ] 2 ψ ( 1 ) ( 2 ) \int_0^1 \ln t \ln(1-t) \ dt = ([\psi(1)-\psi(2)]^2-\psi^{(1)}(2))\mathrm{B}(1,1) = [\psi(1)-\psi(2)]^2-\psi^{(1)}(2)

We note that ψ ( z ) = γ + H z 1 = γ + 0 1 1 t z 1 1 t d t \displaystyle \psi(z) = -\gamma+H_{z-1} = -\gamma+\int_0^1 \frac{1-t^{z-1}}{1-t} \ dt . Hence,

ψ ( 1 ) ( 2 ) = 0 1 d d z 1 t z 1 1 t z = 2 d t = 0 1 t ln t t 1 d t \psi^{(1)}(2) = \int_0^1 \left. \frac{d}{dz} \frac{1-t^{z-1}}{1-t} \right|_{z=2} \ dt = \int_0^1 \frac{t\ln t}{t-1} \ dt

Substituting u = 1 t u=1-t , we get

0 1 t ln t t 1 d t = 0 1 ( 1 u ) ln ( 1 u ) u d u = n = 1 0 1 u n 1 u n n d u = n = 1 1 n 2 1 n ( n + 1 ) = π 2 6 1 \int_0^1 \frac{t\ln t}{t-1} \ dt = \int_0^1 \frac{-(1-u)\ln(1-u)}{u} \ du = \sum_{n=1}^\infty \int_0^1 \frac{u^{n-1}-u^n}{n} \ du = \sum_{n=1}^\infty \frac{1}{n^2}-\frac{1}{n(n+1)} = \frac{\pi^2}{6}-1

Therefore, we have

[ ψ ( 1 ) ψ ( 2 ) ] 2 ψ ( 1 ) ( 2 ) = [ γ ( γ + H 1 ) ] 1 ( π 2 6 1 ) = 2 π 2 6 [\psi(1)-\psi(2)]^2-\psi^{(1)}(2) = [-\gamma - (-\gamma + H_1)]^1 - (\frac{\pi^2}{6}-1) = \boxed{2-\dfrac{\pi^2}{6}}

Powerful !

Kazem Sepehrinia - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...