Beautiful integral

Calculus Level 4

cos ( x ) sec 3 ( 2 x ) \large \cos(x) \sqrt{\sec^3(2x)}

Which of the following is the antiderivative of the function above? Ignore arbitrary constant.

A : sec ( 2 x ) 1 2 A: \sqrt{\frac{\sec(2x)-1}{2}}

B : sec ( 2 x ) + 1 2 B: \sqrt{\frac{\sec(2x)+ 1}{2}}

C : sec ( 2 x ) + 2 2 C: \sqrt{\frac{\sec(2x)+ 2}{2}}

D : sec ( 2 x ) 2 D: \sqrt{\frac{\sec(2x)}{2}}

D B C A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Garrett Clarke
Jun 13, 2015

All of the solutions given are in the form s e c ( 2 x ) + C 2 \sqrt{\frac{sec(2x)+C}{2}} , so if we can find what the constant C C is we'll have our answer. To do this, we take the derivative of our answer and set it equal to the formula in our question, c o s ( x ) s e c 3 ( 2 x ) cos(x) \sqrt{sec^{3}(2x)} .

d d x s e c ( 2 x ) + C 2 = 2 2 d d x s e c ( 2 x ) + C = 2 2 1 2 2 t a n ( 2 x ) s e c ( 2 x ) 1 s e c ( 2 x ) + C \frac{d}{dx} \sqrt{\frac{sec(2x)+C}{2}} = \frac{\sqrt{2}}{2} \frac{d}{dx} \sqrt{sec(2x)+C} = \frac{\sqrt{2}}{2} \frac{1}{2} 2tan(2x)sec(2x) \frac{1}{\sqrt{sec(2x)+C}}

Simplification and replacing t a n ( 2 x ) tan(2x) with s i n ( 2 x ) s e c ( 2 x ) sin(2x)sec(2x) :

2 2 s i n ( 2 x ) s e c 2 ( 2 x ) 1 s e c ( 2 x ) + C = 2 2 s i n ( 2 x ) s e c 2 ( 2 x ) s e c ( 2 x ) + C \frac{\sqrt{2}}{2} sin(2x)sec^{2}(2x) \frac{1}{\sqrt{sec(2x)+C}} = \frac{\sqrt{2}}{2} sin(2x) \frac{sec^{2}(2x)}{\sqrt{sec(2x)+C}}

Replace s i n ( 2 x ) sin(2x) with 2 s i n ( x ) c o s ( x ) 2sin(x)cos(x) and simplify:

2 2 2 s i n ( x ) c o s ( x ) s e c 2 ( 2 x ) s e c ( 2 x ) + C = 2 s i n ( x ) c o s ( x ) s e c 2 ( 2 x ) s e c ( 2 x ) + C \frac{\sqrt{2}}{2} 2sin(x)cos(x) \frac{sec^{2}(2x)}{\sqrt{sec(2x)+C}} = \sqrt{2} sin(x)cos(x) \frac{sec^{2}(2x)}{\sqrt{sec(2x)+C}}

Using the distributive property we have: s e c ( 2 x ) + C = s e c ( 2 x ) ( 1 + C × c o s ( 2 x ) ) = s e c ( 2 x ) 1 + C × c o s ( 2 x ) \sqrt{sec(2x)+C} = \sqrt{sec(2x)(1+C\times cos(2x))} = \sqrt{sec(2x)}\sqrt{1+C\times cos(2x)}

Subbing in, simplifying:

2 s i n ( x ) c o s ( x ) s e c 2 ( 2 x ) s e c ( 2 x ) 1 + C × c o s ( 2 x ) = 2 s i n ( x ) 1 + C × c o s ( 2 x ) c o s ( x ) s e c 3 ( 2 x ) \sqrt{2} sin(x)cos(x) \frac{sec^{2}(2x)}{\sqrt{sec(2x)}\sqrt{1+C\times cos(2x)}} = \frac{\sqrt{2} sin(x)}{\sqrt{1+C\times cos(2x)}} cos(x) \sqrt{sec^{3}(2x)}

Setting equal to our desired function:

2 s i n ( x ) 1 + C × c o s ( 2 x ) c o s ( x ) s e c 3 ( 2 x ) = c o s ( x ) s e c 3 ( 2 x ) \frac{\sqrt{2} sin(x)}{\sqrt{1+C\times cos(2x)}} cos(x) \sqrt{sec^{3}(2x)} = cos(x) \sqrt{sec^{3}(2x)}

From this we can see that 2 s i n ( x ) 1 + C × c o s ( 2 x ) \frac{\sqrt{2} sin(x)}{\sqrt{1+C\times cos(2x)}} must equal 1 1 for our equation to work. We can solve this equation for C C :

2 s i n ( x ) 1 + C × c o s ( 2 x ) = 1 \frac{\sqrt{2} sin(x)}{\sqrt{1+C\times cos(2x)}} = 1

2 s i n ( x ) = 1 + C × c o s ( 2 x ) \sqrt{2} sin(x) = \sqrt{1+C\times cos(2x)}

2 s i n 2 ( x ) = 1 + C × c o s ( 2 x ) 2sin^{2}(x) = 1+C\times cos(2x)

2 s i n 2 ( x ) 1 = C × c o s ( 2 x ) 2sin^{2}(x) - 1= C\times cos(2x)

Replace c o s ( 2 x ) cos(2x) with 1 2 s i n 2 ( x ) 1-2sin^{2}(x) :

2 s i n 2 ( x ) 1 = C ( 1 2 s i n 2 ( x ) ) 2sin^{2}(x) - 1= C(1-2sin^{2}(x))

2 s i n 2 ( x ) 1 1 2 s i n 2 ( x ) = C \frac{2sin^{2}(x) - 1}{1-2sin^{2}(x)} = C

( 1 ) ( 1 2 s i n 2 ( x ) ) 1 2 s i n 2 ( x ) = C \frac{(-1)(1-2sin^{2}(x))}{1-2sin^{2}(x)} = C

C = 1 C = -1

Finally, plugging in C gives us our answer: s e c ( 2 x ) 1 2 \boxed{\sqrt{\frac{sec(2x)-1}{2}}}

Majed Musleh
Jun 13, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...