Beautiful Limit

Calculus Level 4

lim n r = 1 n 1 + ( r n ) 168 r = e π a b \lim_{n \to \infty} {\prod_{r=1}^{n}{\sqrt[r]{1+\left(\frac {r}{n} \right)^{168} }}}=\huge{e}^{\small\dfrac{\pi^a}{b}}

where, e e is the Euler's Number ; Find a + b a+b


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim n r = 1 n 1 + ( r n ) 168 r I = ln ( L ) = lim n r = 1 n 1 r ln ( 1 + ( r n ) 168 ) = lim n r = 1 n 1 n n r ln ( 1 + ( r n ) 168 ) = 0 1 1 x ln ( 1 + x 168 ) d x = u = x 168 1 168 0 1 1 u ln ( 1 + u ) d u = 1 168 0 1 1 u k = 1 ( 1 ) k + 1 u k k d u = 1 168 k = 1 ( 1 ) k + 1 u k k 2 0 1 = 1 168 k = 1 ( 1 ) k + 1 1 k 2 = 1 168 π 2 12 see below = π 2 2016 L = e I \begin{aligned} L&=\lim_{n\to\infty}\prod\limits_{r=1}^n\sqrt[r]{1+\left(\frac{r}{n}\right)^{168}}\\ I=\ln(L)&=\lim_{n\to\infty}\sum\limits_{r=1}^n\frac{1}{r}\ln\left(1+\left(\frac{r}{n}\right)^{168}\right)\\ &=\lim_{n\to\infty}\sum\limits_{r=1}^n\frac 1n\frac{n}{r}\ln\left(1+\left(\frac{r}{n}\right)^{168}\right)=\int\limits_0^1 \frac 1x\ln\left(1+x^{168}\right)\,\mathrm{d}x\\ &\overset{u=x^{168}}=\frac{1}{168}\int\limits_0^1 \frac 1u\ln\left(1+u\right)\,\mathrm{d}u\\ &=\frac{1}{168}\int\limits_0^1 \frac 1u\sum\limits_{k=1}^\infty (-1)^{k+1}\frac{u^k}{k}\,\mathrm{d}u\\ &=\left.\frac{1}{168} \sum\limits_{k=1}^\infty (-1)^{k+1}\frac{u^k}{k^2}\right|_0^1=\frac{1}{168} \sum\limits_{k=1}^\infty (-1)^{k+1}\frac{1}{k^2}\\ &=\frac{1}{168}\cdot\frac{\pi^2}{12}~~~~~~~~~~~~~~~~\color{#3D99F6} \text{see below}\\ &=\frac{\pi^2}{2016}\\\\ L&=\mathrm e^I \end{aligned}

So a + b = 2018 a+b=\boxed{2018}


\\~\\~\\

Mostly you can write a periodical function f ( x ) f(x) with period L as a fourier series:

f ( x ) = a 0 L + 2 L n = 1 [ a n cos ( k n x ) + b n sin ( k n x ) ] k n = 2 π n / L a 0 = 1 L 0 L f ( x ) d x a n = 2 L 0 L f ( x ) cos ( k n x ) d x b n = 2 L 0 L f ( x ) sin ( k n x ) d x \begin{aligned} f(x)&=\frac{a_0}{\sqrt{L}}+\sqrt{\frac 2L}\sum_{n=1}^\infty\left[a_n\cos(k_nx)+b_n\sin(k_nx)\right]\\ k_n&=2\pi n/L\\\\ a_0&=\frac{1}{\sqrt{L}}\int\limits_0^Lf(x)\,\mathrm{d}x\\ a_n&=\sqrt{\frac{2}{L}}\int\limits_0^Lf(x)\cos(k_nx) \,\mathrm{d}x\\ b_n&=\sqrt{\frac{2}{L}}\int\limits_0^Lf(x)\sin(k_nx) \,\mathrm{d}x \end{aligned}

Now consider:

f ( x ) = x 2 , π x π (and periodicaly continued) L = 2 π a 0 = 1 2 π 2 3 π 3 a k = 1 π 4 π ( 1 ) k k 2 f ( 0 ) = 0 = 1 3 π 2 + 4 k = 1 ( 1 ) k k 2 k = 1 ( 1 ) k + 1 k 2 = k = 1 ( 1 ) k k 2 = π 2 12 \begin{aligned} f(x)&=x^2~~~~~,~-\pi\leq x\leq\pi~~\text{(and periodicaly continued)}\\ L&=2\pi\\\\ a_0&=\frac{1}{\sqrt{2\pi}}\frac 23\pi^3\\ a_k&=\frac{1}{\sqrt{\pi}}\frac{4\pi(-1)^k}{k^2}\\ \Rightarrow f(0)=0&=\frac 13\pi^2+4\sum\limits_{k=1}^\infty\frac{(-1)^k}{k^2}\\\\ \Rightarrow \sum\limits_{k=1}^\infty\frac{(-1)^{k+1}}{k^2}&=-\sum\limits_{k=1}^\infty\frac{(-1)^k}{k^2}=\frac{\pi^2}{12} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...