Beautiful or Difficult?

Calculus Level 5

0 0 sin x sin y sin ( x + y ) x y ( x + y ) d x d y \int_{0}^{\infty} \int_{0}^{\infty} \frac{\sin x \sin y \sin (x+y)}{x y(x+y)} \, \mathrm{d} x \mathrm{d} y

Enter your answer upto 3 decimal places.


The answer is 1.644.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Jun 28, 2019

first note sin ( x + y ) = sin ( x ) cos ( y ) + cos ( x ) sin ( y ) \sin(x+y) = \sin(x)\cos(y)+\cos(x)\sin(y) .by symmetry of x,y, we would have the integral be 0 0 sin ( x ) sin ( y ) sin ( x + y ) x y ( x + y ) d x d y = 2 0 0 sin 2 ( x ) sin ( y ) cos ( y ) x y ( x + y ) d x d y = 0 0 sin 2 ( x ) sin ( 2 y ) x y ( x + y ) d x d y \int_0^\infty \int_0^\infty \dfrac{\sin(x)\sin(y) \sin(x+y)}{xy(x+y)} dx dy =2 \int_0^\infty \int_0^\infty \dfrac{\sin^2(x)\sin(y)\cos(y) }{xy(x+y)} dx dy = \int_0^\infty \int_0^\infty \dfrac{\sin^2(x)\sin(2y) }{xy(x+y)} dx dy now, we make the double integral a triple integral: 0 0 0 sin 2 ( x ) sin ( 2 y ) x y e t ( x + y ) d t d x d y = 0 ( 0 sin 2 ( x ) x e t x d x ) ( 0 sin ( 2 y ) y e t y d y ) d t \int_0^\infty \int_0^\infty \int_0^\infty \dfrac{\sin^2(x)\sin(2y) }{xy}e^{-t(x+y)} dt dx dy= \int_0^\infty \left( \int_0^\infty \dfrac{\sin^2 (x)}{x} e^{-tx} dx \right)\left( \int_0^\infty \dfrac{\sin (2y)}{y} e^{-ty} dy \right) dt we can solve each by differentiating under the integral sign(shown at the end of solution). this integral becomes so we are left evaluating 1 4 0 ln ( 1 + 4 t 2 ) arctan ( 2 t ) d t = 0 π / 2 x ln ( sec ( x ) ) csc 2 ( x ) d x \dfrac{1}{4} \int_0^\infty \ln\left(1+\dfrac{4}{t^2} \right)\arctan\left(\frac{2}{t}\right) dt=\int_0^{\pi/2} x \ln(\sec(x)) \csc^2(x) dx since we had 1 + ( 2 t ) 2 1+\left(\dfrac{2}{t}\right)^2 inside the log, and 2 t \frac{2}{t} inside the arctan, a tangent substitution was motivated, i.e 2 t = tan ( x ) \frac{2}{t} = \tan(x) . using integration by parts this turns into 0 π / 2 [ x ln ( sec ( x ) ) ] ( csc 2 ( x ) d x ) = [ x ln ( sec ( x ) ) ] cot ( x ) 0 π / 2 + 0 π / 2 [ ln ( sec ( x ) ) + x tan ( x ) ] cot ( x ) d x = 0 π / 2 x d x + 0 π / 2 ln ( sec ( x ) ) cot ( x ) d x = π 2 8 + 0 π / 2 ln ( sec ( x ) ) sec 2 ( x ) 1 tan ( x ) d x \int_0^{\pi/2} \left[x \ln(\sec(x))\right] \left(\csc^2(x) dx\right) = -\left[x \ln(\sec(x))\right] \cot(x)\big|_0^{\pi/2}+\int_0^{\pi/2} \left[ \ln(\sec(x))+x\tan(x)\right]\cot(x) dx\\ = \int_0^{\pi/2} x dx+\int_0^{\pi/2} \ln(\sec(x)) \cot(x) dx = \dfrac{\pi^2}{8} +\int_0^{\pi/2} \dfrac{\ln(\sec(x))}{\sec^2(x)-1} \tan(x) dx making the obvious substitution in the last integral: π 2 8 + 0 x e 2 x 1 d x = π 2 8 + 1 4 0 x e x 1 d x = π 2 8 + 1 4 π 2 6 = π 2 6 \dfrac{\pi^2}{8} +\int_0^{\infty} \dfrac{x}{e^{2x}-1} dx = \dfrac{\pi^2}{8} +\dfrac{1}{4}\int_0^{\infty} \dfrac{x}{e^{x}-1} dx = \dfrac{\pi^2}{8}+\dfrac{1}{4}\dfrac{\pi^2}{6} = \boxed{\dfrac{\pi^2}{6}} note in the last integral the integral defination of the zeta function was used.


the two integrals were I 1 ( t ) = 0 sin 2 ( x ) x e t x d x I 1 ( t ) = 0 sin 2 ( x ) e t x d x = 1 2 0 ( 1 cos ( 2 x ) ) e t x d x = 1 2 ( 1 t t t 2 + 4 ) I_1 (t) = \int_0^\infty \dfrac{\sin^2 (x)}{x} e^{-tx} dx \to I_1 '(t) = -\int_0^\infty \sin^2 (x) e^{-tx} dx =-\dfrac{1}{2}\int_0^\infty (1-\cos(2x))e^{-tx} dx = -\dfrac{1}{2} \left(\dfrac{1}{t} -\dfrac{t}{t^2+4} \right) integrating this w.r.t to t and using the fact that I 1 ( ) = 0 I_1(\infty) = 0 , we have I 1 ( t ) = 1 2 ( ln ( t ) 1 2 ln ( t 2 + 4 ) ) = 1 4 ln ( 1 + 4 t 2 ) I_1(t) = -\dfrac{1}{2} \left(\ln(t)-\dfrac{1}{2} \ln(t^2+4)\right) = \dfrac{1}{4}\ln\left(1+\dfrac{4}{t^2} \right) similarly: I 2 ( t ) = 0 sin ( 2 y ) y e t y d y I 2 ( t ) = 0 sin ( 2 y ) e t y d y = 2 t 2 + 4 I_2(t) = \int_0^\infty \dfrac{\sin (2y)}{y} e^{-ty} dy \to I_2'(t) = -\int_0^\infty \sin (2y) e^{-ty} dy = -\dfrac{2}{t^2+4} using I 2 ( 0 ) = π 2 I_2(0) = \dfrac{\pi}{2} , we have I 2 ( t ) = π 2 arctan ( t 2 ) = arctan ( 2 t ) I_2(t) = \dfrac{\pi}{2} -\arctan\left(\frac{t}{2}\right) = \arctan\left(\frac{2}{t}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...