Join 1 more 6 , find 1 more 4 and 5.

Observe the follwing 6 6 2 = 4 3 5 6 66 6 2 = 44 3 55 6 666 6 2 = 444 3 555 6 \begin{aligned} 66^2 &= {\color{#D61F06} 4 }3{\color{#3D99F6} 5} 6\\ 666^2 & = {\color{#D61F06} 44 } 3 {\color{#3D99F6} 55} 6\\ 6666^2 & = {\color{#D61F06} 444 } 3 {\color{#3D99F6} 555} 6 \end{aligned} Is it true that 666 6 6 2 n 6’s = 444 4 n-1 3’s 3 555 55 n-1 6’s 6 ? \overbrace{666\cdots 66^2}^{\text{n 6's}} = \overbrace{\color{#D61F06}444\cdots 4}^{\text{n-1 3's}}3\overbrace{\color{#3D99F6}555\cdots 55}^{\text{n-1 6's}}6\,?

This is an original problem .

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Dec 18, 2018

Call the number A = 666 666 A= 666\cdots 666 having n n numbers of sixes. Now A 2 = ( 666 666 n 6’s ) 2 = 36 ( 1 0 n 1 9 ) 2 = 4 9 ( 1 0 2 n 2 1 0 n + 1 ) A^2 = (\underbrace{666\cdots 666}_{\text{n 6's}} )^2=36\left(\dfrac{10^n-1}{9}\right)^2=\dfrac{4}{9}\,(10^{2n} -2\cdot 10^n +1) Since 1 0 2 n 2 1 0 n = 1 0 n ( 1 0 n 2 ) = 1 0 n ( 999 9 n-1 9’s 8 ) = 999 9 n-1 9’s 8 000 0 n 0’s \begin{aligned} 10^{2n} -2 \cdot 10^n & = 10^n(10^n -2) \\&= 10^n(\underbrace{999\cdots 9}_{\text{ n-1 9's}}8)\\& =\underbrace{999\cdots 9}_{\text{ n-1 9's}}8\underbrace{000\cdots 0}_{\text{n 0's}}\end{aligned} Therefore We have the following B = 1 0 2 n 2 1 0 n + 1 = 999 9 n-1 9’s 8 000 0 n -1 0’s 1 = 999 9 n-1 9’s 0 + 8 000 0 n -1 0’s 1 \begin{aligned} B= 10^{2n} -2\cdot 10^n +1 & = \underbrace{999\cdots 9}_{\text{ n-1 9's}}8\underbrace{000\cdots 0}_{\text{n -1 0's}}1\\& = \underbrace{999\cdots 9}_{\text{ n-1 9's}}0 + 8\underbrace{000\cdots 0}_{\text{n -1 0's}}1 \end{aligned} Let a 0 = 81 a_0=81 and observe that a 1 = 801 = 720 + 81 = 720 + a 0 , a 2 = 8001 = 7200 + 801 = 7200 + a 1 a_1 = 801 = 720+81=720+a_0, \ a_2= 8001 = 7200+ 801 =7200+a_1 and n 2 \forall n\geq 2 we have following recursive formula (by induction can be proved) a n 1 = 72 × 1 0 n 1 + a n 2 a_{n-1} = 72\times 10^{n-1} + a_{n-2} which when divided by 9 9 gives R = k = 1 n 1 8 1 0 k + 9 = 88 8 n-1 8’s 9 R = \sum_{k=1}^{n-1}8\cdot 10^{k} + 9 = \underbrace{88\cdots 8}_{\text{n-1 8's}} 9 Thus we prove B 9 = 11 11 n-1 1’s 0 + 88 8 n-1 8’s 9 \dfrac{B}{9} = \underbrace{11\cdots 11}_{\text{n-1 1's }} 0+ \underbrace{88\cdots 8}_{\text{n-1 8's}} 9 and further multiplying gives 4 B 9 = 44 44 n-1 4’s 0 + 3 55 55 n-1’s 6 A 2 = ( 666 666 n 6’s ) 2 = 44 44 n-1 4’s 3 55 55 n-1 5’s 6 \begin{aligned}\dfrac{4B}{9} & = \underbrace{44\cdots 44}_{\text{n-1 4's}} 0+3\underbrace{55\cdots 55}_{\text{n-1's}} 6\\ A^2 & = (\underbrace{666\cdots 666}_{\text{n 6's}} )^2=\underbrace{44\cdots 44}_{\text{n-1 4's}}3\underbrace{55\cdots 55}_{\text{n-1 5's}} 6\end{aligned} Proof for 4 × 88 8 n-1 8’s 9 = 3 55 55 n-1 5’s 6 4\times \underbrace{88\cdots 8}_{\text{n-1 8's}} 9 = 3\underbrace{55\cdots 55}_{\text{n-1 5's}} 6 If a 0 = 89 a_0= 89 then a 1 = 889 = 800 + a 0 , a 2 = 8889 = 8000 + a 1 a_1 =889 = 800+a_0 , \ a_2 = 8889 = 8000+a_1 Giving us the recursive formula n 2 \forall n\geq 2 ( by induction can be proved ) a n 1 = 8 1 0 n 1 + a n 2 a_{n-1} = 8\cdot 10^{n-1} +a_{n-2} and hence 4 a n 1 = 32 1 0 n 1 + 4 a n 2 = k = 1 n 1 32 1 0 k + 36 = 3 55 55 n-1 5’s 4a_{n-1} = 32\cdot 10^{n-1} +4a_{n-2} = \sum_{k=1}^{n-1} 32\cdot 10^k + 36 = 3\underbrace{55\cdots 55}_{\text{n-1 5's}}

Sir @Pi Han Goh . Can you check it out please? Let me know whether the working is rigorous or not. I would be glad to make it error free

Naren Bhandari - 2 years, 5 months ago

Log in to reply

It would better to explain what this sequence of numbers, a 0 , a 1 , a_0, a_1, \ldots represent.

Plus, I know what you're trying to say, but why do you have ( a 0 , a 1 , a 2 ) = ( 81 , 801 , 8001 ) (a_0, a_1,a_2) = (81,801,8001) first, then later you have ( a 0 , a 1 , a 2 ) = ( 89 , 889 , 8889 ) (a_0, a_1,a_2) = (89,889, 8889) ? It's important to have a consistent use of notations.

While I noticed that you have used induction twice, why don't you just use it once? That is,

For positive integer n 2 n\geq2 , let A n = ( 6666 6 n times ) 2 A_n = ( \underbrace{6666\ldots6}_{n \text{ times}} )^2 . We can use induction to prove that A n = that same expression A_n = \text{that same expression} .

How? Show that A n × 121 = A n + 1 A_n \times 121 = A_{n+1} . Use long multiplication, and you're done.

Pi Han Goh - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...