Beautiful Summation

Calculus Level 5

n = 1 m = 1 1 m 2 n + m n 2 + 2 m n = ? \large{\displaystyle\sum_{n=1}^{\infty} \displaystyle\sum_{m=1}^{\infty} \frac{1}{m^2n + mn^2 + 2mn} = \ ?}


The answer is 1.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 18, 2016

Note that m , n = 1 1 m 2 n + m n 2 + 2 m n = m , n = 1 1 m n ( m + n + 2 ) = n = 1 1 n m = 1 1 m ( m + n + 2 ) = n = 1 1 n ( n + 2 ) m = 1 ( 1 m 1 m + n + 2 ) = n = 1 1 n ( n + 2 ) m = 1 n + 2 1 m = 3 2 n = 1 1 n ( n + 2 ) + m = 3 1 m n = m 2 1 n ( n + 2 ) \begin{array}{rcl} \displaystyle \sum_{m,n=1}^\infty \frac{1}{m^2n + mn^2 + 2mn} & = & \displaystyle \sum_{m,n=1}^\infty \frac{1}{mn(m+n+2)} \; = \; \sum_{n=1}^\infty \frac{1}{n}\sum_{m=1}^\infty \frac{1}{m(m+n+2)} \\ & = & \displaystyle \sum_{n=1}^\infty \frac{1}{n(n+2)}\sum_{m=1}^\infty \left(\frac{1}{m} - \frac{1}{m+n+2}\right) \\ & = & \displaystyle\sum_{n=1}^\infty \frac{1}{n(n+2)} \sum_{m=1}^{n+2}\frac{1}{m} \; = \; \frac32\sum_{n=1}^\infty\frac{1}{n(n+2)} + \sum_{m=3}^\infty \frac{1}{m}\sum_{n=m-2}^\infty \frac{1}{n(n+2)} \end{array} Since n = k 1 n ( n + 2 ) = 1 2 n = k ( 1 n 1 n + 2 ) = 1 2 ( 1 k + 1 k + 1 ) \sum_{n=k}^\infty \frac{1}{n(n+2)} \; = \; \frac12\sum_{n=k}^\infty \left(\frac{1}{n} - \frac{1}{n+2}\right) \; = \; \frac12\left(\frac{1}{k} + \frac{1}{k+1}\right) we deduce that m , n = 1 1 m 2 n + m n 2 + 2 m n = 9 8 + m = 3 1 2 m ( 1 m 2 + 1 m 1 ) = 9 8 + 1 2 m = 1 1 m ( m + 2 ) + 1 2 m = 2 1 m ( m + 1 ) = 9 8 + 3 8 + 1 2 m = 2 ( 1 m 1 m + 1 ) = 9 8 + 3 8 + 1 4 = 7 4 . \begin{array}{rcl} \displaystyle \sum_{m,n=1}^\infty \frac{1}{m^2n + mn^2 + 2mn} & = & \displaystyle \frac98 + \sum_{m=3}^\infty \frac{1}{2m}\left(\frac{1}{m-2} + \frac{1}{m-1}\right) \\ & = & \displaystyle \frac98 + \frac12\sum_{m=1}^\infty \frac{1}{m(m+2)} + \frac12\sum_{m=2}^\infty \frac{1}{m(m+1)} \\ & = & \displaystyle \frac98 + \frac38 + \frac12\sum_{m=2}^\infty \left(\frac{1}{m} - \frac{1}{m+1}\right) \; = \; \frac98 + \frac38 + \frac14 \\ & = & \boxed{\frac74}\;. \end{array}

Another great solution! (Not printing this time, ahahaha)

Pi Han Goh - 5 years, 4 months ago

Log in to reply

We can even general this problem sir. Instead of setting 2 if we set ( k ) > 1 \Re{(k)}>-1 we can get general problem.

Naren Bhandari - 1 year, 1 month ago

Can you please explain the step in the 3rd line ?

Devang Agarwal - 5 years, 4 months ago

Log in to reply

I obtain the first of these expressions n = 1 1 n ( n + 2 ) m = 1 n + 2 1 m = 3 2 n = 1 1 n ( n + 2 ) + m = 3 1 m n = m 2 1 n ( n + 2 ) \sum_{n=1}^\infty \frac{1}{n(n+2)} \sum_{m=1}^{n+2}\frac{1}{m} \; = \; \frac32\sum_{n=1}^\infty\frac{1}{n(n+2)} + \sum_{m=3}^\infty \frac{1}{m}\sum_{n=m-2}^\infty \frac{1}{n(n+2)} because the sum on the previous line telescopes.

To get the second expression, I am reversing the order of summation. For a general value of m m , n n needs to be summed over all values from m 2 m-2 to \infty . Of course, this is not possible unless m 3 m \ge 3 . The first part of the second expression is the contribution for values of m m equal to 1 1 or 2 2 , while the second part is the general expression for m 3 m \ge 3 .

Mark Hennings - 5 years, 4 months ago

Log in to reply

Thanks, Wonderful solution by the way.

Devang Agarwal - 5 years, 4 months ago

Same solution (+1). Why this problem is under Calculus ?

Aditya Sky - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...