Beauty lies in the eyes of beholder!

Calculus Level 5

n = 1 j = 1 n k = 1 1 j ( n + k ) 3 = 2 ζ ( a ) ζ ( a 1 ) \sum_{n=1}^{\infty}\sum_{j=1}^{n}\sum_{k=1}^{\infty}\frac{1}{j(n+k)^3} =2\zeta{(a) }-\zeta{(a-1) }

Find 2 a 2a .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Wesley Low
Dec 10, 2020

n = 1 j = 1 n k = 1 1 j ( n + k ) 3 \sum_{n=1}^{\infty}\sum_{j=1}^{n}\sum_{k=1}^{\infty}\dfrac{1}{j\left(n+k\right)^3} = j = 1 1 j n = j k = 1 1 ( n + k ) 3 =\sum_{j=1}^{\infty}\dfrac{1}{j}\sum_{n=j}^{\infty}\sum_{k=1}^{\infty}\dfrac{1}{\left(n+k\right)^3} = j = 1 1 j i = 1 i ( j + i ) 3 =\sum_{j=1}^{\infty}\dfrac{1}{j}\sum_{i=1}^{\infty}\dfrac{i}{\left(j+i\right)^3} = j = 1 i = 1 1 ( j + i ) 3 i j =\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\dfrac{1}{\left(j+i\right)^3}\dfrac{i}{j} Summing across all p = j + i p=j+i gives p = 2 1 p 3 q = 1 p 1 p q q \sum_{p=2}^{\infty}\dfrac{1}{p^3}\sum_{q=1}^{p-1}\dfrac{p-q}{q} = p = 2 1 p 3 ( p H p 1 p + 1 ) =\sum_{p=2}^{\infty}\dfrac{1}{p^3}\left(pH_{p-1}-p+1\right) = p = 2 H p 1 p 2 1 p 2 + 1 p 3 =\sum_{p=2}^{\infty}\dfrac{H_{p-1}}{p^2}-\dfrac{1}{p^2}+\dfrac{1}{p^3} = p = 1 H p p 2 1 p 2 =\sum_{p=1}^{\infty}\dfrac{H_{p}}{p^2}-\dfrac{1}{p^2} It is known that p = 1 H p p 2 = 2 ζ ( 3 ) \sum_{p=1}^{\infty}\dfrac{H_{p}}{p^2}=2\zeta\left(3\right) . Hence n = 1 j = 1 n k = 1 1 j ( n + k ) 3 = 2 ζ ( 3 ) ζ ( 2 ) \sum_{n=1}^{\infty}\sum_{j=1}^{n}\sum_{k=1}^{\infty}\dfrac{1}{j\left(n+k\right)^3}=\boxed{2\zeta\left(3\right)-\zeta\left(2\right)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...