Beauty Of Flux in Physics

As shown in the diagram, a point charge q q is placed on the y y -axis at a distance of l l above the surface, the x z xz -plane. The flux of electric field passing through the plate is q a ε 0 , \frac { q }{ a{ \varepsilon }_{ 0 } }, where a a is a positive integer. Find a a .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 3, 2018

The picture is not clear, but the plate P P is the region of the x z xz -plane defined by 0 z 0 \le z \le \ell , x z x \ge z . The flux Φ \Phi through the plate is then Φ = P q 4 π ε 0 r r 3 d S = P q 4 π ε 0 r r 3 ( k ) d A = q 4 π ε 0 P d x d z ( x 2 + z 2 + 2 ) 3 2 = q 4 π ε 0 0 1 ( Z d X ( X 2 + Z 2 + 1 ) 3 2 ) d Z \Phi \; = \; \iint_P \frac{q}{4\pi\varepsilon_0} \frac{\mathbf{r}}{r^3}\cdot d\mathbf{S} \; = \; \iint_P \frac{q}{4\pi\varepsilon_0} \frac{\mathbf{r}}{r^3}\cdot (-\mathbf{k})dA \; = \; \frac{q\ell}{4\pi \varepsilon_0}\iint_P \frac{dx\,dz}{(x^2 + z^2 + \ell^2)^{\frac32}} \; = \; \frac{q}{4\pi \varepsilon_0} \int_0^1 \left(\int_Z^\infty \frac{dX}{(X^2 + Z^2 + 1)^{\frac32}}\right)\,dZ making the substitution x = X x = \ell X , z = Z z = \ell Z . The substitution X = Z 2 + 1 sinh u X = \sqrt{Z^2 + 1}\sinh u now gives Φ = q 4 π ε 0 0 1 ( sinh 1 Z Z 2 + 1 s e c h 2 u Z 2 + 1 d u ) d Z = q 4 π ε 0 0 1 d Z Z 2 + 1 [ tanh u ] sinh 1 Z Z 2 + 1 = q 4 π ε 0 0 1 1 Z 2 + 1 ( 1 Z 2 Z 2 + 1 ) d Z = q 4 π ε 0 ( 1 4 π 0 1 Z d Z ( Z 2 + 1 ) 2 Z 2 + 1 ) = q 4 π ε 0 ( 1 4 π 1 2 0 1 d w ( w + 1 ) 2 w + 1 ) \begin{aligned} \Phi & = \; \frac{q}{4\pi \varepsilon_0}\int_0^1 \left(\int_{\sinh^{-1}\frac{Z}{\sqrt{Z^2+1}}}^\infty \frac{\mathrm{sech}^2u}{Z^2+1}\,du\right)\,dZ \; = \; \frac{q}{4\pi \varepsilon_0} \int_0^1 \frac{dZ}{Z^2+1}\Big[\tanh u\Big]_{\sinh^{-1}\frac{Z}{\sqrt{Z^2+1}}}^\infty \\ & = \; \frac{q}{4\pi \varepsilon_0} \int_0^1 \frac{1}{Z^2+1}\left(1 - \frac{Z}{\sqrt{2Z^2 + 1}}\right)\,dZ \; =\; \frac{q}{4\pi \varepsilon_0} \left(\tfrac14\pi - \int_0^1 \frac{Z\,dZ}{(Z^2+1)\sqrt{2Z^2+1}}\right) \\ & =\; \frac{q}{4\pi \varepsilon_0} \left(\tfrac14\pi - \tfrac12\int_0^1 \frac{dw}{(w+1)\sqrt{2w+1}}\right) \end{aligned} Finally the substitution 2 w + 1 = p 2 2w+1=p^2 gives Φ = q 4 π ε 0 ( 1 4 π 1 3 d p p 2 + 1 ) = q 4 π ε 0 ( 1 4 π ( 1 3 π 1 4 π ) ) = q 24 ε 0 \Phi \; = \; \frac{q}{4\pi \varepsilon_0} \left(\tfrac14\pi - \int_1^{\sqrt{3}}\frac{dp}{p^2+1}\right) \; = \; \frac{q}{4\pi \varepsilon_0} \left(\tfrac14\pi - \big(\tfrac13\pi - \tfrac14\pi\big)\right) \; = \; \frac{q}{24\varepsilon_0} making the answer 24 \boxed{24} .

@Mark Hennings , Can you solve it with only symmetrical considerations?

Priyanshu Mishra - 3 years, 2 months ago

Log in to reply

Whats your solution?( if you have one)

rajdeep das - 3 years, 2 months ago

@Priyanshu Mishra Any hints for solving using symmetrical considerations???

Aaghaz Mahajan - 2 years, 3 months ago

@Aaghaz Mahajan , consider charge to be enclosed from all sides such that the positive x-z plane is one symmetrical part of that combination. As -infinty to infinity is considered to be a closed surface it will take 16 such planes to cover it up. So flux through one plane is (q/16)epsilonot. Now think how to proceed here onwards.

Priyanshu Mishra - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...