Because, it's the year 2015!

Calculus Level 4

π ÷ lim n [ n 4030 ( tan 1 ( n 2015 ) n 2015 tan 1 ( n 2015 + 1 ) n 2015 + 1 ) ] = ? {\pi \div \lim_{n \to \infty} \left [ n^{4030} \left(\dfrac{\tan^{-1}(n^{2015})}{n^{2015}} - \dfrac{\tan^{-1}(n^{2015} + 1)}{n^{2015} + 1} \right) \right ] = \ ?}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jul 26, 2015

l e t let t = n 2015 t=n^{2015}

The given expression becomes

π ÷ lim t [ t 2 ( arctan ( t ) t arctan ( t + 1 ) t + 1 ) ] \large{\pi \div \displaystyle \lim_{t\to \infty} \left [t^2 \left (\frac{\arctan(t)}{t}-\frac{\arctan (t+1)}{t+1} \right) \right]}

Simplifying and using

arctan ( a ) arctan ( b ) = arctan ( a b 1 + a b ) \arctan(a)-\arctan(b)=\arctan \left(\frac{a-b}{1+ab} \right )

lim t [ t 2 t ( t + 1 ) ( t ( arctan ( t ( t + 1 ) 1 + t ( t + 1 ) ) ) + arctan t ) ] \large{ \displaystyle \lim_{t\to \infty} \left [\frac{t^2}{t(t+1)} \left (t(\arctan \left(\frac{t-(t+1)}{1+t(t+1)} \right))+\arctan t \right) \right]}

simplifying

lim t [ 1 1 + 1 t ( t ( arctan ( 1 1 + t ( t + 1 ) ) ) + arctan t ) ] \large{\displaystyle \lim_{t\to \infty} \left[\frac{1}{1+\frac{1}{t}}\left(t(\arctan \left(\frac{-1}{1+t(t+1)} \right))+\arctan t \right) \right]}

Applying the limit we get

1 ( t × arctan ( 0 ) ) + arctan t \large{1(t\times \arctan (0))+\arctan t} where t t\to \infty

π 2 \large{\boxed{\frac{\pi}{2}}}

Correct. But can you elaborate the last step?

Satyajit Mohanty - 5 years, 10 months ago

Log in to reply

Hope now its complete

Tanishq Varshney - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...