Beginner Functional Equation

Algebra Level 3

A function f : Q Q f \colon \mathbb Q \to \mathbb Q satisfies f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) .
The deduction that f ( x ) = a x f(x)=ax for some a Q a\in\mathbb Q is:

Correct Wrong

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

展豪 張
Mar 10, 2016

For m , n Q m,n \in \mathbb Q ,
f ( m ) = f ( 1 + 1 + + 1 ) = f ( 1 ) + f ( 1 ) + + f ( 1 ) = m f ( 1 ) f(m)=f(1+1+\cdots +1)=f(1)+f(1)+\cdots +f(1)=mf(1)
n f ( m n ) = f ( m n ) + f ( m n ) + + f ( m n ) = f ( m n + m n + + m n ) = f ( m ) = m f ( 1 ) \displaystyle nf(\frac mn)=f(\frac mn)+f(\frac mn)+\cdots +f(\frac mn)=f(\frac mn+\frac mn+\cdots +\frac mn)=f(m)=mf(1)
f ( m n ) = m n f ( 1 ) \displaystyle \therefore f(\frac mn)=\frac mnf(1)
The a a in the question is f ( 1 ) f(1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...