Beginner Vector Geometry #5

Geometry Level 2

There are two points A A and B B on a coordinate plane with an origin O O .

The midpoint of A B \overline{AB} is M M .

Given that O M = ( 3 , 7 ) \overrightarrow{OM}=(3,~7) and O A O B = 6 \overrightarrow{OA}\cdot\overrightarrow{OB}=6 , find the value of O A 2 + O B 2 \overline{OA}^2+\overline{OB}^2 .


This problem is a part of <Beginner Vector Geometry> series .


The answer is 220.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Jul 2, 2017

Note that O A + O B = 2 O M \overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OM} .

O A 2 + O B 2 = O A 2 + O B 2 + 2 O A O B 2 O A O B = ( O A + O B ) 2 2 O A O B = 4 O M 2 12 = 4 O M 2 12 = 4 ( 3 2 + 7 2 ) 12 = 220 \begin{aligned} \overline{OA}^2+\overline{OB}^2&=\overrightarrow{OA}^2+\overrightarrow{OB}^2+2\overrightarrow{OA}\cdot\overrightarrow{OB}-2\overrightarrow{OA}\cdot\overrightarrow{OB} \\ &=(\overrightarrow{OA}+\overrightarrow{OB})^2-2\overrightarrow{OA}\cdot\overrightarrow{OB} \\ &=4\overrightarrow{OM}^2-12 \\ &=4\overline{OM}^2-12 \\ &=4(3^2+7^2)-12 \\ &=\boxed{220} \end{aligned}

Rab Gani
Jul 4, 2017

Let A(a,b), then B(6 – a,14 – b)
(OA) ⃗.(OB) ⃗=6 = 6a + 14b – (a2 + b2), (OA) ⃗^2+(OB) ⃗^2 = (a2 + b2) + [(6 – a)2+(14 – b)2] = 232 – 2[6a + 14b – (a2 + b2)] = 232 – 2[6] = 220,

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...