Beginner Vector Geometry #6

Geometry Level 2

Two circles C 1 C_1 , C 2 C_2 with radii 3 and 5 and with centers O 1 O_1 and O 2 O_2 are tangent to each other.

There is a moving point P P on the circle C 2 C_2 .

Find the maximum of O 1 P O 2 P \overrightarrow{O_1P}\cdot\overrightarrow{O_2P} .


This problem is a part of <Beginner Vector Geometry> series .


The answer is 65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jul 3, 2017

This problem is solvable by intuition, which is why I put this problem as "beginner".

However, the solution will be as logical as possible.


Note that P P is a point on C 2 C_2 .

And it would be nice to have some "constant" value.

Then know that O 1 P = O 2 P O 2 O 1 \overrightarrow{O_1P}=\overrightarrow{O_2P}-\overrightarrow{O_2O_1} .

Therefore, O 1 P O 2 P = ( O 2 P O 2 O 1 ) O 2 P = O 2 P 2 O 2 O 1 O 2 P = 25 O 2 O 1 O 2 P \overrightarrow{O_1P}\cdot\overrightarrow{O_2P}=\left(\overrightarrow{O_2P}-\overrightarrow{O_2O_1}\right)\cdot\overrightarrow{O_2P}=\overrightarrow{O_2P}^2-\overrightarrow{O_2O_1}\cdot\overrightarrow{O_2P}=25-\overrightarrow{O_2O_1}\cdot\overrightarrow{O_2P} .


You'll see that O 2 O 1 O 2 P \overrightarrow{O_2O_1}\cdot\overrightarrow{O_2P} should be minimum.

Let the angle that O 2 O 1 \overrightarrow{O_2O_1} and O 2 P \overrightarrow{O_2P} form be θ \theta . ( 0 < θ < π ) (0<\theta<\pi)

O 2 O 1 O 2 P = O 2 O 1 O 2 P cos θ = 40 cos θ \overrightarrow{O_2O_1}\cdot\overrightarrow{O_2P}=|\overrightarrow{O_2O_1}||\overrightarrow{O_2P}|\cos\theta=40\cos\theta .

The value is minimum if cos θ = 1 \cos\theta=-1 .


Therefore, the maximum of O 1 P O 2 P \overrightarrow{O_1P}\cdot\overrightarrow{O_2P} is 25 40 × ( 1 ) = 65 25-40\times(-1)=\boxed{65} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...