Being endlessly productive

Geometry Level 3

When k = 2 cos ( π 2 k ) \prod_{k=2}^{\infty}\cos\left(\frac{\pi}{2^k}\right)

is computed, the result is a π b a\pi^b for integers a a and b . b. What is a + b ? a+b?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First look at the finite product P n = k = 2 n cos ( π 2 k ) P_{n} = \displaystyle\prod_{k=2}^{n} \cos\left(\dfrac{\pi}{2^{k}}\right) for n > 2. n \gt 2.

If we then multiply this by sin ( π 2 n ) , \sin\left(\dfrac{\pi}{2^{n}}\right), then since sin ( x ) cos ( x ) = sin ( 2 x ) 2 \sin(x)\cos(x) = \dfrac{\sin(2x)}{2} the product will successively "collapse" from the last term to the first, leaving us with the equation

sin ( π 2 n ) P n = sin ( π 2 ) 2 n 1 = 2 2 n P n = 2 2 n sin ( π 2 n ) . \sin\left(\dfrac{\pi}{2^{n}}\right)*P_{n} = \dfrac{\sin(\frac{\pi}{2})}{2^{n-1}} = \dfrac{2}{2^{n}} \Longrightarrow P_{n} = \dfrac{2}{2^{n}\sin\left(\dfrac{\pi}{2^{n}}\right)}.

Now lim n 2 n sin ( π 2 n ) = lim n π sin ( π 2 n ) π 2 n = π lim x 0 sin ( x ) x = π 1 = π , \lim_{n \rightarrow \infty} 2^{n}\sin\left(\dfrac{\pi}{2^{n}}\right) = \lim_{n \rightarrow \infty} \pi*\dfrac{\sin\left(\dfrac{\pi}{2^{n}}\right)}{\dfrac{\pi}{2^{n}}} = \pi*\lim_{x \rightarrow 0} \dfrac{\sin(x)}{x} = \pi * 1 = \pi,

where x = π 2 n 0 x = \dfrac{\pi}{2^{n}} \rightarrow 0 as n . n \rightarrow \infty. Thus

lim n P n = 2 π = 2 π 1 , \lim_{n \rightarrow \infty} P_{n} = \dfrac{2}{\pi} = 2\pi^{-1}, and so a + b = 2 + ( 1 ) = 1 . a + b = 2 + (-1) = \boxed{1}.

Exactly! Very nice! Thank you, Brian.

Otto Bretscher - 5 years, 9 months ago

Upvoted Brilliant Solution Sir \begin{array}{|cc|} \hline \hline\hline \hline\hline \hline\hline \hline\hline \hline \text{Upvoted}\\ \text{Brilliant Solution Sir}\\ \hline \hline \end{array}

Sir, Can you please elaborate more the fourth line when we multiply sin , because a lot of things are coming and disappearing which caused a little confusion.

Like: s i n ( π 2 ) 2 n 1 \frac{ sin ( \frac{\pi}{2} )}{ 2^{n-1}}

And also, P n = 2 2 n s i n ( π 2 n ) \Longrightarrow P_{ n }=\frac { 2 }{ 2^{ n }\quad sin(\frac { \pi }{ { 2 }^{ n } } ) }

Syed Baqir - 5 years, 9 months ago

Log in to reply

As an example, look at P 5 = cos ( π 4 ) cos ( π 8 ) cos ( π 16 ) cos ( π 32 ) . P_{5} = \cos(\frac{\pi}{4})\cos(\frac{\pi}{8})\cos(\frac{\pi}{16})\cos(\frac{\pi}{32}).

Then using the identity I've mentioned in my solution, we see that

sin ( π 32 ) P 5 = cos ( π 4 ) cos ( π 8 ) cos ( π 16 ) cos ( π 32 ) sin ( π 32 ) = \sin(\frac{\pi}{32})*P_{5} = \cos(\frac{\pi}{4})\cos(\frac{\pi}{8})\cos(\frac{\pi}{16})\cos(\frac{\pi}{32})\sin(\frac{\pi}{32}) =

cos ( π 4 ) cos ( π 8 ) cos ( π 16 ) ( 1 2 sin ( π 16 ) ) = \cos(\frac{\pi}{4})\cos(\frac{\pi}{8})\cos(\frac{\pi}{16})*(\frac{1}{2}\sin(\frac{\pi}{16})) =

cos ( π 4 ) cos ( π 8 ) ( 1 4 sin ( π 8 ) ) = cos ( π 4 ) ( 1 8 sin ( π 4 ) ) = 1 16 sin ( π 2 ) = 1 16 = 2 2 5 . \cos(\frac{\pi}{4})\cos(\frac{\pi}{8})*(\frac{1}{4}\sin(\frac{\pi}{8})) = \cos(\frac{\pi}{4})*(\frac{1}{8}\sin(\frac{\pi}{4})) = \frac{1}{16}\sin(\frac{\pi}{2}) = \frac{1}{16} = \dfrac{2}{2^{5}}.

So in this case P 5 = 2 2 5 sin ( π 2 5 ) , P_{5} = \dfrac{2}{2^{5}\sin\left(\dfrac{\pi}{2^{5}}\right)}, and in general P n = 2 2 n sin ( π 2 n ) . P_{n} = \dfrac{2}{2^{n}\sin\left(\dfrac{\pi}{2^{n}}\right)}.

Brian Charlesworth - 5 years, 9 months ago

Log in to reply

Thank you Sir !

Syed Baqir - 5 years, 9 months ago
Rodrigo Raffa
Oct 25, 2015

Cos (0) = 1 because 1/infinite

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...